MAX13101E/MAX13102E/
MAX13103E/MAX13108E
16-Channel Buffered CMOS
Logic-Level Translators
19-3802; Rev 4; 7/13
For pricing, delivery, and ordering information, please contact Maxim Direct
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.
General Description
The MAX13101E/MAX13102E/MAX13103E/MAX13108E
16-bit bidirectional CMOS logic-level translators pro-
vide the level shifting necessary to allow data transfer in
multivoltage systems. These devices are inherently
bidirectional due to their design and do not require the
use of a direction input. Externally applied voltages,
VCC and VL, set the logic levels on either side of the
devices. Logic signals present on the VL side of the
device appear as a higher voltage logic signal on the
VCC side of the device, and vice-versa.
The MAX13101E/MAX13102E/MAX13103E feature an
enable input (EN) that, when low, reduces the VCC and
VLsupply currents to less than 2µA. The MAX13108E
features a multiplexing input (MULT) that selects one
byte between the two, thus allowing multiplexing of the
signals. The MAX13101E/MAX13102E/MAX13103E/
MAX13108E have ±15kV ESD protection on the I/O VCC
side for greater protection in applications that route sig-
nals externally. Three different output configurations are
available during shutdown, allowing the I/O on the VCC
side or the VLside to be put in a high-impedance state
or pulled to ground through an internal 6kΩresistor.
The MAX13101E/MAX13102E/MAX13103E/MAX13108E
accept VCC voltages from +1.65V to +5.5V and VL
voltages from +1.2V to VCC, making them ideal for data
transfer between low-voltage ASICs/PLDs and higher
voltage systems. The MAX13101E/MAX13102E/
MAX13103E/MAX13108E are available in 36-bump
WLP and 40-pin TQFN packages, and operate over the
extended -40°C to +85°C temperature range. See the
Ordering Information
.
Applications
Features
oWide Supply Voltage Range
VCC Range of 1.65V to 5.5V
VLRange of 1.2V to VCC
oESD Protection on I/O VCC Lines
±15kV Human Body Model
oUp to 20Mbps Throughput
oLow 0.03µA Typical Quiescent Current
oWLP and TQFN Packages
Pin Configurations
Ordering Information/Selector Guide continued at end of data sheet.
Ordering Information/Selector Guide
PART PIN-PACKAGE DATA
RATE (Mbps)
I/O VL STATE
DURING SHUTDOWN
I/O VCC STATE
DURING SHUTDOWN
MULTIPLEXER
FEATURE
MAX13101EETL+ 40 TQFN-EP*
5mm x 5mm x 0.8mm 20 High impedance 6kΩ to GND No
Note:
All devices are specified over the -40°C to +85°C operating temperature range.
MAX13101E
MAX13102E
MAX13103E
TQFN
+
TOP VIEW OF BOTTOM LEADS
56
4
3
I/O VL14
I/O VL16
VL
VCC
I/O VCC16
I/O VL13
I/O VL3
I/O VL1
VL
I/O VL4
VCC
I/O VCC1
11
12
I/O VL7
14
15
16
17
I/O VL8
I/O VL9
I/O VCC7
I/O VCC8
I/O VCC9
I/O VCC10
I/O VL15
I/O VL213
7
I/O VL10
I/O VCC11
8
*EXPOSED PAD CONNECTED TO GROUND
I/O VL11
I/O VL12
EN
I/O VCC12
GND
9 10
I/O VL6
2
I/O VCC6
I/O VL5
1
I/O VCC5
GND
26 25
27
28 24 23 22 212930
I/O VCC15
I/O VCC14
I/O VCC13
I/O VCC2
I/O VCC3
I/O VCC4
18
19
20
40
39
37
36
35
34
38
33
32
31
GND
*EP
CMOS Logic-Level
Translation
Portable Equipment
Cell Phones
PDAs
Digital Still Cameras
Smart Phones
+
Denotes a lead-free/RoHS-compliant package.
*
EP = Exposed pad.
Pin Configurations continued at end of data sheet.
Typical Operating Circuit appears at end of data sheet.
MAX13101E/MAX13102E/
MAX13103E/MAX13108E
16-Channel Buffered CMOS
Logic-Level Translators
2Maxim Integrated
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS
(VCC = +1.65V to +5.5V, VL= +1.2V to VCC, EN = VL(MAX13101E/MAX13102E/MAX13103E), MULT = VLor GND (MAX13108E),
TA= TMIN to TMAX, unless otherwise noted. Typical values are at VCC = +1.65V, VL= +1.2V, TA= +25°C.) (Notes 1, 2)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
(All voltages referenced to GND.)
VCC ...........................................................................-0.3V to +6V
VL...........................................................................................-0.3V to +6V
I/O VCC_......................................................-0.3V to (VCC + 0.3V)
I/O VL_.....................................................................-0.3V to (VL+ 0.3V)
EN, MULT .................................................................-0.3V to +6V
Short-Circuit Duration I/O VL_, I/O VCC_ to GND .......Continuous
Continuous Power Dissipation (TA= +70°C)
36-Bump WLP (derate 17.0mW/°C above +70°C).....1361mW
40-Pin TQFN (derate 35.7mW/°C above +70°C) .......2857mW
Operating Temperature Range ...........................-40°C to +85°C
Maximum Junction Temperature .....................................+150°C
Storage Temperature Range ............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
POWER SUPPLIES
VL Supply Range VL1.2 VCC V
VCC Supply Range VCC 1.65 5.50 V
Supply Current from VCC IQVCC
I/O VCC_ = GND, I/O VL _ = GND
or I/O VCC_ = VCC, I/O VL _ = VL,
EN = VL, MULT = GND or VL
0.03 10 µA
Supply Current from VLIQVL
I/O VCC_ = GND, I/O VL _ = GND
or I/O VCC_ = VCC, I/O VL _ = VL,
EN = VL, MULT = GND or VL
0.03 20 µA
VCC Shutdown Supply Current ISHDN-VCC
TA = +25°C, EN = GND, I/O VCC_ = GND,
I/O VL _ = GND,
MAX13101E/MAX13102E/MAX13103E
0.03 1 µA
VL Shutdown Supply Current ISHDN-VL
TA = +25°C, EN = GND, I/O VCC_ = GND,
I/O VL _ = GND,
MAX13101E/MAX13102E/MAX13103E
0.03 2 µA
TA = +25°C, EN = GND,
MAX13102E/MAX13103E 0.02 1
I/O VCC_ Tri-State Output
Leakage Current TA = + 25°C , M U LT = GN D (I/O V
C C
1 - I/O V
C C 8)
or M U LT = VL ( I/O VC C 9 - I/O V
C C 16)
M AX13108E
0.02 1
µA
TA = +25°C, EN = GND, MAX13101E/
MAX13103E 0.02 1
I/O VL _ Tri-State Output Leakage
Current TA = +25°C, MULT = GND (I/O VL1 - I/O
VL8) or MULT = VL (I/OVL9 - I/O VL16)
MAX13108E
0.02 1
µA
I/O VL _ Pulldown Resistance
During Shutdown EN = GND, MAX13102E 4 10 kΩ
MAX13101E/MAX13102E/
MAX13103E/MAX13108E
16-Channel Buffered CMOS
Logic-Level Translators
3
Maxim Integrated
ELECTRICAL CHARACTERISTICS (continued)
(VCC = +1.65V to +5.5V, VL= +1.2V to VCC, EN = VL(MAX13101E/MAX13102E/MAX13103E), MULT = VLor GND (MAX13108E),
TA= TMIN to TMAX, unless otherwise noted. Typical values are at VCC = +1.65V, VL= +1.2V, TA= +25°C.) (Notes 1, 2)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
I/O VCC_ Pulldown Resistance
During Shutdown EN = GND, MAX13101E 4 10 kΩ
EN or MULT Input Leakage
Current TA = +25°C 1 µA
LOGIC-LEVEL THRESHOLDS
I/O VL _ Input-Voltage High
Threshold VIHL 2/3 x
VLV
I/O VL _ Input-Voltage Low
Threshold VILL 1/3 x
VLV
I/O VCC_ Input-Voltage High
Threshold VIHC 2/3 x
VCC V
I/O VCC_ Input-Voltage Low
Threshold VILC 1/3 x
VCC V
EN, MULT Input-Voltage High
Threshold VIH-SHDN VL - 0.4 V
EN, MULT Input-Voltage Low
Threshold VIL-SHDN 0.4 V
I/O VL _ Output-Voltage High VOHL I/O V
L _ sour ce cur r ent = 20µA, I/O V
C C
_ V
IH C VL - 0.4 V
I/O VL _ Output-Voltage Low VOLL I/O VL _ sink current = 20µA, I/O VCC_ VILC 0.4 V
I/O VCC_ Output-Voltage High VOHC I/O V
C C
_ sour ce cur r ent = 20µA, I/O V
L _ V
IH L V
C C - 0.4 V
I/O VCC_ Output-Voltage Low VOLC I/O VCC_ sink current = 20µA, I/O VL _ VILL 0.4 V
RISE/FALL-TIME ACCELERATOR STAGE
I/O VCC side VCC / 2
Transition-Detect Threshold I/O VL side VL / 2 V
Accelerator Pulse Duration VL = 1.2V, VCC = 1.65V 20 ns
VL = 1.2V, VCC = 1.65V 60
I/O VL _ Output-Accelerator Sink
Impedance VL = 5V, VCC = 5V 5
Ω
VL = 1.2V, VCC = 1.65V 15
I/O VCC_ Output-Accelerator Sink
Impedance VL = 5V, VCC = 5V 5
Ω
VL = 1.2V, VCC = 1.65V 30
I/O VL _ Output-Accelerator
Source Impedance VL = 5V, VCC = 5V 5
Ω
VL = 1.2V, VCC = 1.65V 20
I/O VCC_ Output-Accelerator
Source Impedance VL = 5V, VCC = 5V 7
Ω
ESD PROTECTION
I/O VCC_ Human Body Model ±15 kV
MAX13101E/MAX13102E/
MAX13103E/MAX13108E
16-Channel Buffered CMOS
Logic-Level Translators
4Maxim Integrated
TIMING CHARACTERISTICS
(VCC = +1.65V to +5.5V, VL= +1.2V to VCC, EN = VL(MAX13101E/MAX13102E/MAX13103E), MULT = VLor GND (MAX13108E),
TA= TMIN to TMAX, unless otherwise noted. Typical values are at VCC = +1.65V, VL= +1.2V, TA= +25°C.) (Notes 1, 2)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
I/O VL _ Rise Time tRVL RS = 50Ω, CI/OVL_ = 15pF, tRISE 3ns,
(Figures 2a, 2b) 15 ns
I/O VL _ Fall Time tFVL RS = 50Ω, CI/OVL_ = 15pF, tFALL 3ns,
(Figures 2a, 2b) 15 ns
I/O VCC_ Rise Time tRVCC RS = 50Ω, CI/OVCC_ = 50pF, tRISE 3ns,
(Figures 1a, 1b) 15 ns
I/O VCC_ Fall Time tFVCC RS = 50Ω, CI/OVCC_ = 50pF, tFALL 3ns,
(Figures 1a, 1b) 15 ns
Propagation Delay
(Driving I/O VL _) tPVL-VCC RS = 50Ω, CI/OVCC_ = 50pF, tRISE 3ns,
(Figures 1a, 1b) 20 ns
Propagation Delay
(Driving I/O VCC_) tPVCC-VL RS = 50Ω, CI/OVL_ = 15pF, tRISE 3ns,
(Figures 2a, 2b) 20 ns
Channel-to-Channel Skew tSKEW RS = 50Ω, CI/OVCC_ = 50pF, CI/OVL_ =
15pF, tRISE 3ns 5ns
Part-to-Part Skew tPPSKEW RS = 50Ω, CI/OVCC_ = 50pF, CI/OVL_ =
15pF, tRISE 3ns, ΔTA = +20°C (Notes 3, 4) 10 ns
Propagation Delay from
I/O VL _ to I/O VCC_ After EN tEN-VCC CI/OVCC_ = 50pF (Figure 3) 1 µs
Propagation Delay from
I/O VCC_ to I/O VL _ After EN tEN-VL CI/OVL_ = 15pF (Figure 4) 1 µs
Maximum Data Rate RSOURCE = 50Ω, CI/OVCC_ = 50pF,
CI/OVL_ = 15pF, tRISE 3ns 20 Mbps
Note 1: All units are 100% production tested at TA= +25°C. Limits over the operating temperature range are guaranteed by design
and not production tested.
Note 2: For normal operation, ensure that VL< (VCC + 0.3V). During power-up, VL> (VCC + 0.3V) does not damage the device.
Note 3: VCC from device 1 must equal VCC of device 2. VLfrom device 1 must equal VLof device 2.
Note 4: Guaranteed by design, not production tested.
MAX13101E/MAX13102E/
MAX13103E/MAX13108E
16-Channel Buffered CMOS
Logic-Level Translators
5
Maxim Integrated
Test Circuits/Timing Diagrams
MAX13101E
MAX13102E
MAX13103E
MAX13108E
SOURCE RS
6kΩ
6kΩ
ALL UNUSED I/O VCC_ AND I/O VL_ CONNECTED TO GND
I/O VL_
EN/(MULT)
VL
VCC
I/O VCC_
CI/OVCC_
( ) ARE FOR THE MAX13108E
tPHL
tPLH
50%
90%
10%
I/O VCC_
I/O VL_
90%
50%
10%
90%
50%
10%
tRISE/FALL 3ns
tFVCC
tPVL-VCC = tPHL or tPLH
tRVCC
SOURCE
RS
I/O VL_
EN/(MULT)
VL
VCC
I/O VCC_
CI/OVL_
MAX13101E
MAX13102E
MAX13103E
MAX13108E
6kΩ
6kΩ
ALL UNUSED I/O VCC_ AND I/O VL_ CONNECTED TO GND
( ) ARE FOR THE MAX13108E
tPHL
tPLH
I/O VL_
I/O VCC_
90%
50%
10%
90%
50%
10%
50%
90%
10%
tRISE/FALL 3ns
tFVL tRVL
tPVCC-VL = tPHL or tPLH
Figure 1a. Driving I/O VL_ Figure 1b. Timing for Driving I/O VL_
Figure 2a. Driving I/O VCC_ Figure 2b. Timing for Driving I/O VCC_
MAX13101E/MAX13102E/
MAX13103E/MAX13108E
16-Channel Buffered CMOS
Logic-Level Translators
6Maxim Integrated
Test Circuits/Timing Diagrams (continued)
SOURCE
I/O VCC_
100kΩ
I/O VL_
CI/OVCC
VL
EN/(MULT)
I/O VL_
I/O VCC_
tEN-VCC
VL
VL
VCC
0
0
VCC
2
MAX13101E
MAX13102E
MAX13103E
MAX13108E
EN/(MULT)
( ) ARE FOR THE MAX13108E
6kΩ
6kΩ
Figure 3. Propagation Delay from I/O VL_ to I/O VCC_ After EN
I/O VCC_
I/O VL_
CI/OVL
100kΩ
VCC
EN/(MULT)
I/O VL_
I/O VCC_
tEN-VL
VL
VL
VCC
0
0
0
VL
2
SOURCE
MAX13101E
MAX13102E
MAX13103E
MAX13108E
EN/(MULT)
( ) ARE FOR THE MAX13108E
6kΩ
6kΩ
Figure 4. Propagation Delay from I/O VCC_ to I/O VL_ After EN
VL SUPPLY CURRENT vs. VCC SUPPLY VOLTAGE
(DRIVING I/0 VL_, VL = 1.8V)
VCC SUPPLY VOLTAGE (V)
VL SUPPLY CURRENT (μA)
MAX13101-3/8E toc01
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0
20
40
60
80
100
120
DRIVING ONE I/O VL
FIGURE 1a
CI/OVCC_ = 15pF
VL SUPPLY CURRENT vs. VL SUPPLY VOLTAGE
(DRIVING I/0 VCC_, VCC = 5.5V)
VL SUPPLY VOLTAGE (V)
VL SUPPLY CURRENT (μA)
.
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0
500
1000
1500
2000
2500
DRIVING ONE I/O VCC
FIGURE 2a
CI/OVL_ = 15pF
MAX13101-3/8E toc02
VCC SUPPLY CURRENT vs. VL SUPPLY VOLTAGE
(DRIVING I/0 VCC_, VCC = 5.5V)
VL SUPPLY VOLTAGE (V)
VCC SUPPLY CURRENT (μA)
MAX13101-3/8 toc04
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0
1000
2000
3000
4000
5000
6000
7000
8000
DRIVING ONE I/O VCC
FIGURE 2a
CI/OVL_ = 15pF
VCC SUPPLY CURRENT vs. VCC SUPPLY VOLTAGE
(DRIVING I/0 VL_, VL = 1.8V)
VCC SUPPLY VOLTAGE (V)
VCC SUPPLY CURRENT (μA)
MAX13101-3/8 toc03
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0
1000
2000
3000
4000
5000
6000
7000
8000
DRIVING ONE I/O VL
FIGURE 1a
CI/OVCC_ = 15pF
VL SUPPLY CURRENT vs. TEMPERATURE
(DRIVING I/O VCC_)
TEMPERATURE (°C)
VL SUPPLY CURRENT (μA)
MAX13101-3/8E toc05
-40 -15 10 35 60 85
0
100
200
300
400
500
600
700
800
DRIVING ONE I/O VCC
FIGURE 2a
CI/OVL_ = 15pF
VCC SUPPLY CURRENT vs. TEMPERATURE
(DRIVING I/O VCC_)
TEMPERATURE (°C)
VCC SUPPLY CURRENT (μA)
MAX13101-3/8 toc06
-40 -15 10 35 60 85
0
500
1000
1500
2000
2500
3000
DRIVING ONE I/O VCC
FIGURE 2a
CI/OVL_ = 15pF
MAX13101E/MAX13102E/
MAX13103E/MAX13108E
16-Channel Buffered CMOS
Logic-Level Translators
7
Maxim Integrated
Typical Operating Characteristics
(VCC = 3.3V, VL= 1.8V, data rate = 20Mbps, TA = +25°C, unless otherwise noted.)
MAX13101E/MAX13102E/
MAX13103E/MAX13108E
16-Channel Buffered CMOS
Logic-Level Translators
8Maxim Integrated
RISE/FALL TIME vs. CAPACITIVE LOAD
ON I/O VL_ (DRIVING I/O VCC_)
CAPACITIVE LOAD (pF)
RISE/FALL TIME (ns)
MAX13101-3/8E toc10
10 20 30 40 50
0
1
2
3
4
5
6
7
tFVL tRVL
FIGURES 2a, 2b
PROPAGATION DELAY vs. CAPACITIVE LOAD
ON I/O VCC_ (DRIVING I/O VL_)
CAPACITIVE LOAD (pF)
PROPAGATION DELAY (ns)
MAX13101-3/8E toc11
10 20 30 40 50
0
2
4
6
8
10
tPLH
tPHL
FIGURES 1a, 1b
VL SUPPLY CURRENT vs. CAPACITIVE LOAD
ON I/O VL_ (DRIVING I/O VCC_)
CAPACITIVE LOAD (pF)
VL SUPPLY CURRENT (μA)
MAX13101-3/8E toc07
10 20 30 40 50
0
200
400
600
800
1000
1200
DRIVING ONE I/O VCC
FIGURE 2a
VCC SUPPLY CURRENT vs. CAPACITIVE LOAD
ON I/O VCC_ (DRIVING I/O VL_)
CAPACITIVE LOAD (pF)
VCC SUPPLY CURRENT (μA)
MAX13101-3/8E toc08
10 20 30 40 50
0
1000
2000
3000
4000
5000
DRIVING ONE I/O VL
FIGURE 1a
RISE/FALL TIME vs. CAPACITIVE LOAD ON
I/O VCC_ (DRIVING I/O VL_)
CAPACITIVE LOAD (pF)
RISE/FALL TIME (ns)
MAX13101-3/8E toc09
10 20 30 40 50
0
1
2
3
4
tRVCC
tFVCC
FIGURES 1a, 1b
Typical Operating Characteristics (continued)
(VCC = 3.3V, VL= 1.8V, data rate = 20Mbps, TA = +25°C, unless otherwise noted.)
MAX13101E/MAX13102E/
MAX13103E/MAX13108E
16-Channel Buffered CMOS
Logic-Level Translators
9
Maxim Integrated
Pin Description—MAX13101E/MAX13102E/MAX13103E
PIN
TQFN WLP NAME FUNCTION
1, 21, 30 D6 GND Ground
2 C2 I/O VL5Input/Output 5. Referenced to VL.
3 A3 I/O VL6Input/Output 6. Referenced to VL.
4 B3 I/O VL7Input/Output 7. Referenced to VL.
5 C3 I/O VL8Input/Output 8. Referenced to VL.
6 A4 I/O VL9Input/Output 9. Referenced to VL.
7 B4 I/O VL10 Input/Output 10. Referenced to VL.
8 C4 I/O VL11 Input/Output 11. Referenced to VL.
9 A5 I/O VL12 Input/Output 12. Referenced to VL.
10 C6 EN Global Enable Input. Pull EN low for shutdown. Drive EN to VCC or VL for normal operation.
11 B5 I/O VL13 Input/Output 13. Referenced to VL.
12 C5 I/O VL14 Input/Output 14. Referenced to VL.
13 A6 I/O VL15 Input/Output 15. Referenced to VL.
14 B6 I/O VL16 Input/Output 16. Referenced to VL.
15, 36 A1 VLLogic Supply Voltage, +1.2V VL VCC. Bypass VL to GND with a 0.1µF capacitor.
16, 35 F1 VCC
VCC Supply Voltage, +1.65V VCC +5.5V. Bypass VCC to GND with a 0.1µF capacitor.
For full ESD protection, connect a 1.0µF capacitor from VCC to GND, located as close to the
VCC input as possible.
17 E6 I/O VCC16 Input/Output 16. Referenced to VCC.
18 F6 I/O VCC15 Input/Output 15. Referenced to VCC.
RAIL-TO-RAIL DRIVING (DRIVING I/O VL)
10ns/div
MAX13101E-3/8E toc13
I/0 VL_
1V/div
I/0 VCC_
2V/div
GND
GND
CI/OVCC_= 50pF
Typical Operating Characteristics (continued)
(VCC = 3.3V, VL= 1.8V, data rate = 20Mbps, TA = +25°C, unless otherwise noted.)
MAX13101E/MAX13102E/
MAX13103E/MAX13108E
16-Channel Buffered CMOS
Logic-Level Translators
10 Maxim Integrated
Pin Description—MAX13101E/MAX13102E/MAX13103E (continued)
PIN
TQFN WLP NAME FUNCTION
19 D5 I/O VCC14 Input/Output 14. Referenced to VCC.
20 E5 I/O VCC13 Input/Output 13. Referenced to VCC.
22 F5 I/O VCC12 Input/Output 12. Referenced to VCC.
23 D4 I/O VCC11 Input/Output 11. Referenced to VCC.
24 E4 I/O VCC10 Input/Output 10. Referenced to VCC.
25 F4 I/O VCC9Input/Output 9. Referenced to VCC.
26 D3 I/O VCC8Input/Output 8. Referenced to VCC.
27 E3 I/O VCC7Input/Output 7. Referenced to VCC.
28 F3 I/O VCC6Input/Output 6. Referenced to VCC.
29 D2 I/O VCC5Input/Output 5. Referenced to VCC.
31 E2 I/O VCC4Input/Output 4. Referenced to VCC.
32 F2 I/O VCC3Input/Output 3. Referenced to VCC.
33 D1 I/O VCC2Input/Output 2. Referenced to VCC.
34 E1 I/O VCC1Input/Output 1. Referenced to VCC.
37 B1 I/O VL1Input/Output 1. Referenced to VL.
38 C1 I/O VL2Input/Output 2. Referenced to VL.
39 A2 I/O VL3Input/Output 3. Referenced to VL.
40 B2 I/O VL4Input/Output 4. Referenced to VL.
EP Exposed Pad. Connect EP to GND.
Pin Description—MAX13108E
PIN
TQFN WLP NAME FUNCTION
1, 21, 30 D6 GND Ground
2 C2 I/O VL5Input/Output 5. Referenced to VL.
3 A3 I/O VL6Input/Output 6. Referenced to VL.
4 B3 I/O VL7Input/Output 7. Referenced to VL.
5 C3 I/O VL8Input/Output 8. Referenced to VL.
6 A4 I/O VL9Input/Output 9. Referenced to VL.
7 B4 I/O VL10 Input/Output 10. Referenced to VL.
8 C4 I/O VL11 Input/Output 11. Referenced to VL.
9 A5 I/O VL12 Input/Output 12. Referenced to VL.
MAX13101E/MAX13102E/
MAX13103E/MAX13108E
16-Channel Buffered CMOS
Logic-Level Translators
11
Maxim Integrated
Pin Description—MAX13108E (continued)
PIN
TQFN WLP NAME FUNCTION
10 C6 MULT
Multiplexing Input. Drive MULT low to enable channels 9 to 16. Driving MULT low puts
channels 1 to 8 into tri-state. Drive MULT to VCC or VL to enable channels 1 to 8. Driving
MULT to VCC or VL puts channels 9 to 16 into tri-state.
11 B5 I/O VL13 Input/Output 13. Referenced to VL.
12 C5 I/O VL14 Input/Output 14. Referenced to VL.
13 A6 I/O VL15 Input/Output 15. Referenced to VL.
14 B6 I/O VL16 Input/Output 16. Referenced to VL.
15, 36 A1 VLLogic Supply Voltage, +1.2V VL VCC. Bypass VL to GND with a 0.1µF capacitor.
16, 35 F1 VCC
VCC Supply Voltage, +1.65V VCC +5.5V. Bypass VCC to GND with a 0.1µF capacitor.
For full ESD protection, connect a 1.0µF capacitor from VCC to GND, located as close to the
VCC input as possible.
17 E6 I/O VCC16 Input/Output 16. Referenced to VCC.
18 F6 I/O VCC15 Input/Output 15. Referenced to VCC.
19 D5 I/O VCC14 Input/Output 14. Referenced to VCC.
20 E5 I/O VCC13 Input/Output 13. Referenced to VCC.
22 F5 I/O VCC12 Input/Output 12. Referenced to VCC.
23 D4 I/O VCC11 Input/Output 11. Referenced to VCC.
24 E4 I/O VCC10 Input/Output 10. Referenced to VCC.
25 F4 I/O VCC9Input/Output 9. Referenced to VCC.
26 D3 I/O VCC8Input/Output 8. Referenced to VCC.
27 E3 I/O VCC7Input/Output 7. Referenced to VCC.
28 F3 I/O VCC6Input/Output 6. Referenced to VCC.
29 D2 I/O VCC5Input/Output 5. Referenced to VCC.
31 E2 I/O VCC4Input/Output 4. Referenced to VCC.
32 F2 I/O VCC3Input/Output 3. Referenced to VCC.
33 D1 I/O VCC2Input/Output 2. Referenced to VCC.
34 E1 I/O VCC1Input/Output 1. Referenced to VCC.
37 B1 I/O VL1Input/Output 1. Referenced to VL.
38 C1 I/O VL2Input/Output 2. Referenced to VL.
39 A2 I/O VL3Input/Output 3. Referenced to VL.
40 B2 I/O VL4Input/Output 4. Referenced to VL.
EP Exposed Pad. Connect EP to GND.
MAX13101E/MAX13102E/
MAX13103E/MAX13108E
16-Channel Buffered CMOS
Logic-Level Translators
12 Maxim Integrated
EN
V
CC
I/O V
L
1
I/O V
L
2
I/O V
L
3
I/O V
L
4
I/O V
L
5
I/O V
L
6
I/O V
L
7
I/O V
L
8
I/O V
L
9
I/O V
L
10
I/O V
L
11
I/O V
L
12
I/O V
L
13
I/O V
L
14
I/O V
L
15
I/O V
L
16
I/O V
CC
1
I/O V
CC
2
I/O V
CC
3
I/O V
CC
4
I/O V
CC
5
I/O V
CC
6
I/O V
CC
7
I/O V
CC
8
I/O V
CC
9
I/O V
CC
10
I/O V
CC
11
I/O V
CC
12
I/O V
CC
13
I/O V
CC
14
I/O V
CC
15
GND
I/O V
CC
16
V
L
MAX13101E
MAX13102E
MAX13103E
Functional Diagrams
MULT
I/O V
L
1
I/O V
L
2
I/O V
L
3
I/O V
L
4
I/O V
L
5
I/O V
L
6
I/O V
L
7
I/O V
L
8
I/O V
L
9
I/O V
L
10
I/O V
L
11
I/O V
L
12
I/O V
L
13
I/O V
L
14
I/O V
L
15
I/O V
L
16
I/O V
CC
1
I/O V
CC
2
I/O V
CC
3
I/O V
CC
4
I/O V
CC
5
I/O V
CC
6
I/O V
CC
7
I/O V
CC
8
I/O V
CC
9
I/O V
CC
10
I/O V
CC
11
I/O V
CC
12
I/O V
CC
13
I/O V
CC
14
I/O V
CC
15
I/O V
CC
16
GND
MAX13108E
V
L
V
CC
MAX13101E/MAX13102E/
MAX13103E/MAX13108E
16-Channel Buffered CMOS
Logic-Level Translators
13
Maxim Integrated
Detailed Description
The MAX13101E/MAX13102E/MAX13103E/MAX13108E
logic-level translators provide the level shifting neces-
sary to allow data transfer in a multivoltage system.
Externally applied voltages, VCC and VL, set the logic
levels on either side of the device. Logic signals pre-
sent on the VLside of the device appear as a higher
voltage logic signal on the VCC side of the device, and
vice-versa. The MAX13101E/MAX13102E/MAX13103E/
MAX13108E are bidirectional level translators allowing
data translation in either direction (VLVCC) on
any single data line. The MAX13101E/MAX13102E/
MAX13103E/MAX13108E accept VLfrom +1.2V to VCC.
All devices have a VCC range from +1.65V to +5.5V,
making them ideal for data transfer between low-volt-
age ASICs/PLDs and higher voltage systems.
The MAX13101E/MAX13102E/MAX13103E feature an
output enable mode that reduces VCC supply current to
less than 1µA, and VLsupply current to less than 2µA
when in shutdown. The MAX13108E features a multi-
plexing input that selects one byte between the two,
thus allowing multiplexing of the signals. The
MAX13101E/MAX13102E/MAX13103E/MAX13108E
have ±15kV ESD protection on the I/O VCC side for
greater protection in applications that route signals
externally. The MAX13101E/MAX13102E/MAX13103E/
MAX13108E operate at a guaranteed data rate of
20Mbps. The maximum data rate depends heavily
on the load capacitance (see the
Typical Operating
Characteristics
) and the output impedance of the
external driver.
Power-Supply Sequencing
For proper operation, ensure that +1.65V VCC +5.5V,
+1.2V VL+5.5V, and VLVCC. During power-up
sequencing, VLVCC does not damage the device.
When VCC is disconnected and VLis powering up, up to
10mA of current can be sourced to each load on the VL
side, yet the device does not latch up. To guarantee that
no excess leakage current flows and that the device
does not interfere with the I/O on the VLside, VCC should
be connected to GND with a max 50Ωresistor when the
VCC supply is not present (Figure 5).
Input Driver Requirements
The MAX13101E/MAX13102E/MAX13103E/MAX13108E
architecture is based on a one-shot accelerator output
stage (Figure 6). Accelerator output stages are always
in tri-state except when there is a transition on any of
the translators on the input side, either I/O VL_ or
I/O VCC_. Then a short pulse is generated, during
which the accelerator output stages become active and
charge/discharge the capacitances at the I/Os. Due to
the bidirectional nature, both input stages become
active during the one-shot pulse. This can lead to some
current feeding into the external source that is driving
the translator. However, this behavior helps to speed
up the transition on the driven side.
For proper full-speed operation, the output current of a
device that drives the inputs of the MAX13101E/
MAX13102E/MAX13103E/MAX13108E should meet the
following requirement:
i > 108x V x (C + 10pF)
where, i is the driver output current, V is the logic-supply
voltage (i.e., VLor VCC) and C is the parasitic capaci-
tance of the signal line.
Enable Output Mode (EN)
The MAX13101E/MAX13102E/MAX13103E feature an
enable input (EN) that, when driven low, places the
device into shutdown mode. During shutdown, the
MAX13101E I/O VCC_ ports are pulled down to ground
with internal 6kΩresistors and the I/O VL_ ports enter
tri-state. MAX13102E I/O VCC_ lines enter tri-state and
the I/OVL_ lines are pulled down to ground with internal
6kΩresistors. All I/O VCC_ and I/O VL_ lines on the
MAX13103E enter tri-state while the device is in shut-
down mode. During shutdown, the VCC supply current
reduces to less than 1µA, and the VLsupply current
reduces to less than 2µA. To guarantee minimum shut-
down supply current, all I/O VL_ need to be driven to
GND or VL, or pulled to GND or VLthrough 100kΩ
resistors. All I/O VCC_ need to be driven to GND or
VCC, or pulled to GND or VCC through 100kΩresistors.
Drive EN to logic-high (VLor VCC) for normal operation.
I/O V
CC
16 I/O V
L
16
I/O V
L
1
I/O V
CC
1
V
CC
V
L
+1.2V TO +5.5V
GND
V
CC
SUPPLY
V
BATT
DISABLE
R
DSON
< 50Ω
MAX13101E
MAX13102E
MAX13103E
MAX13108E
Figure 5. Recommended Circuit for Powering Down VCC
MAX13101E/MAX13102E/
MAX13103E/MAX13108E
16-Channel Buffered CMOS
Logic-Level Translators
14 Maxim Integrated
Multiplexing Input (MULT)
The MAX13108E features a multiplexing input (MULT)
that enables 8 of the 16 channels and places the
remaining 8 into tri-state. Figure 7 depicts a typical mul-
tiplexing configuration using the MAX13108E. Drive
MULT high to enable I/O VCC1 through I/O VCC8 and
I/O VL1 through I/O VL8. Driving MULT high sets
I/O VCC9 through I/O VCC16 and I/O VL9 through I/O
VL16 into tri-state. Drive MULT low to enable I/O VCC9
through I/O VCC16 and I/O VL9 through I/O VL16.
Driving MULT low sets I/O VCC1 through I/O VCC8 and
I/O VL1 through I/O VL8 into tri-state.
±15kV ESD Protection
As with all Maxim devices, ESD-protection structures are
incorporated on all pins to protect against electrostatic
discharges encountered during handling and assembly.
The I/O VCC_ lines have extra protection against static
discharge. Maxim’s engineers have developed state-of-
the-art structures to protect these pins against ESD of
±15kV without damage. The ESD structures withstand
high ESD in all states: normal operation, tri-state output
mode, and powered down. After an ESD event, Maxim’s
E versions keep working without latchup, whereas com-
peting products can latch and must be powered down
to remove the latchup condition.
ESD protection can be tested in various ways. The
I/O VCC_ lines of the MAX13101E/ MAX13102E/
MAX13103E/MAX13108E are characterized for protec-
tion to ±15kV using the Human Body Model.
RISE-TIME
ACCELERATOR
FALL-TIME
ACCELERATOR
I/O V
CC
_
I/O V
L_
V
CC
V
L
RISE-TIME
ACCELERATOR
FALL-TIME
ACCELERATOR
MAX13101E
MAX13102E
MAX13103E
MAX13108E
Figure 6. Simplified Diagram (1 I/O Line)
PORT A
PORT B
I/O V
L
9
I/O V
L
10
I/O V
L
11
I/O V
L
12
I/O V
L
13
I/O V
L
14
I/O V
L
15
I/O V
L
16
I/O V
L
3
I/O V
L
4
I/O V
L
5
I/O V
L
6
I/O V
L
7
I/O V
L
8
I/O V
L
1
I/O V
L
2
I/O V
CC
1
MULT
I/O V
CC
2
I/O V
CC
3
I/O V
CC
4
I/O V
CC
5
I/O V
CC
6
I/O V
CC
7
I/O V
CC
8
I/O V
CC
9
I/O V
CC
10
I/O V
CC
11
I/O V
CC
12
I/O V
CC
13
I/O V
CC
14
I/O V
CC
15
I/O V
CC
16
MAX13108E
Figure 7. MAX13108E Multiplexing Configuration
MAX13101E/MAX13102E/
MAX13103E/MAX13108E
16-Channel Buffered CMOS
Logic-Level Translators
15
Maxim Integrated
ESD Test Conditions
ESD performance depends on a variety of conditions.
Contact Maxim for a reliability report that documents
test setup, test methodology, and test results.
Human Body Model
Figure 8a shows the Human Body Model and Figure 8b
shows the current waveform it generates when dis-
charged into a low impedance. This model consists of
a 100pF capacitor charged to the ESD voltage of inter-
est, which is then discharged into the test device
through a 1.5kΩresistor.
Machine Model
The Machine Model for ESD tests all pins using a
200pF storage capacitor and zero discharge resis-
tance. Its objective is to emulate the stress caused by
contact that occurs with handling and assembly during
manufacturing. All pins require this protection during
manufacturing, not just inputs and outputs. Therefore,
after PC board assembly, the Machine Model is less
relevant to I/O ports.
Applications Information
Power-Supply Decoupling
To reduce ripple and the chance of transmitting incor-
rect data, bypass VLand VCC to ground with 0.1µF
capacitors. To ensure full ±15kV ESD protection,
bypass VCC to ground with a 1µF ceramic capacitor.
Place all capacitors as close to the power-supply inputs
as possible.
Capacitive Loading
Capacitive loading on the I/O lines impacts the rise time
(and fall time) of the MAX13101E/MAX13102E/
MAX13103E/MAX13108E when driving the signal lines.
The actual rise time is a function of the parasitic capaci-
tance, the supply voltage, and the drive impedance of
the MAX13101E/MAX13102E/MAX13103E/MAX13108E.
For proper operation, the signal must reach the VOH as
required before the rise-time accelerators turn off.
HIGH-
VOLTAGE
DC
SOURCE
DEVICE
UNDER
TEST
RC 1MΩRD 1500Ω
CHARGE-CURRENT-
LIMIT RESISTOR
DISCHARGE
RESISTANCE
STORAGE
CAPACITOR
CS
100pF
Figure 8a. Human Body ESD Test Model
100%
90%
36.8%
tRL
tDL
TIME
CURRENT WAVEFORM
PEAK-TO-PEAK RINGING
(NOT DRAWN TO SCALE)
10%
0
0
AMPERES
IPIr
Figure 8b. Human Body Model Current Waveform
MAX13101E/MAX13102E/
MAX13103E/MAX13108E
16-Channel Buffered CMOS
Logic-Level Translators
16 Maxim Integrated
Ordering Information/Selector Guide (continued)
PART PIN-PACKAGE DATA
RATE (Mbps)
I/O V
L
STATE
DURING SHUTDOWN
I/O V
CC
STATE
DURING SHUTDOWN
MULTIPLEXER
FEATURE
MAX13102EEWX+ 36 WLP**
3.06mm x 3.06mm 20 6kΩ to GND High impedance No
MAX13102EETL+ 40 TQFN-EP*
5mm x 5mm x 0.8mm 20 6kΩ to GND High impedance No
MAX13103EEWX+ 36 WLP**
3.06mm x 3.06mm 20 High impedance High impedance No
MAX13103EETL+ 40 TQFN-EP*
5mm x 5mm x 0.8mm 20 High impedance High impedance No
MAX13108EEWX+ 36 WLP**
3.06mm x 3.06mm 20 High impedance High impedance Yes
MAX13108EETL+ 40 TQFN-EP*
5mm x 5mm x 0.8mm 20 High impedance High impedance Yes
Pin Configurations (continued)
MA131018E
TQFN
+
TOP VIEW OF BOTTOM LEADS
56
4
3
I/O VL14
I/O VL16
VL
VCC
I/O VCC16
I/O VL13
I/O VL3
I/O VL1
VL
I/O VL4
VCC
I/O VCC1
11
12
I/O VL7
14
15
16
17
I/O VL8
I/O VL9
I/O VCC7
I/O VCC8
I/O VCC9
I/O VCC10
I/O VL15
I/O VL213
7
I/O VL10
I/O VCC11
8
* EXPOSED PAD CONNECTED TO GROUND
I/O VL11
I/O VL12
MULT
I/O VCC12
GND
9 10
I/O VL6
2
I/O VCC6
I/O VL5
1
I/O VCC5
GND
26 25
27
28 24 23 22 212930
I/O VCC15
I/O VCC14
I/O VCC13
I/O VCC2
I/O VCC3
I/O VCC4
18
19
20
40
39
37
36
35
34
38
33
32
31
GND
*EP
Note:
All devices are specified over the -40°C to +85°C operating temperature range.
+
Denotes a lead-free/RoHS-compliant package.
*
EP = Exposed pad.
**
WLP bumps are in a 6 x 6 array.
MAX13101E/MAX13102E/
MAX13103E/MAX13108E
16-Channel Buffered CMOS
Logic-Level Translators
17
Maxim Integrated
Pin Configurations (continued)
123456
E
D
F
WLP
(BOTTOM VIEW)
WLP
(BOTTOM VIEW)
I/O VCC3 I/O VCC6 I/O VCC9 I/O VCC12 I/O VCC15
I/O VCC1 I/O VCC4 I/O VCC7 I/O VCC10 I/O VCC13 I/O VCC16
I/O VCC2 I/O VCC5 I/O VCC8 I/O VCC11 I/O VCC14 GND
I/O VL2 I/O VL5 I/O VL8 I/O VL11 I/O VL14 EN
I/O VL1 I/O VL4 I/O VL7 I/O VL10 I/O VL13 I/O VL16
VLI/O VL3 I/O VL6 I/O VL9 I/O VL12 I/O VL15
B
A
C
MAX13102E/MAX13103E
123456
E
D
F
VCC
VCC I/O VCC3 I/O VCC6 I/O VCC9 I/O VCC12 I/O VCC15
I/O VCC1 I/O VCC4 I/O VCC7 I/O VCC10 I/O VCC13 I/O VCC16
I/O VCC2 I/O VCC5 I/O VCC8 I/O VCC11 I/O VCC14 GND
I/O VL2 I/O VL5 I/O VL8 I/O VL11 I/O VL14 MULT
I/O VL1 I/O VL4 I/O VL7 I/O VL10 I/O VL13 I/O VL16
VLI/O VL3 I/O VL6 I/O VL9 I/O VL12 I/O VL15
B
A
C
MAX13108E
++
Chip Information
PROCESS: BiCMOS
Typical Operating Circuit
MAX13101E
MAX13102E
MAX13103E
MAX13108E
+1.8V +3.3V
+1.8V
SYSTEM
CONTROLLER
+3.3V
SYSTEM
DATA
( ) ARE FOR MAX13108E
DATA
GND
VLVCC
I/O VCC_
I/O VL_
EN/(MULT)
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.
36 WLP W363A3-1 21-0024
40 TQFN-EP T4055-1 21-0140
Package Information
For the latest package outline information and land patterns (foot-
prints), go to www.maximintegrated.com/packages. Note that a
“+”, “#”, or “-” in the package code indicates RoHS status only.
Package drawings may show a different suffix character, but the
drawing pertains to the package regardless of RoHS status.
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and
max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
18
________________________________Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000
© 2013 Maxim Integrated Products, Inc. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.
MAX13101E/MAX13102E/
MAX13103E/MAX13108E
16-Channel Buffered CMOS
Logic-Level Translators
Revision History
REVISION
NUMBER
REVISION
DATE DESCRIPTION PAGES
CHANGED
2 8/06 Release of the MAX13101EETL+
3 6/08 Changed UCSP to WLP packaging 1, 2, 9, 10, 11, 16,
17, 18, 19
4 7/13 Removed MAX13101EEWX from data sheet 1