IGW08T120
TrenchStop® Series q
Power Semiconductors 1 Rev. 2.6 Nov. 09
Low Loss IGBT in TrenchStop® and Fieldstop technology
Short circuit withstand time – 10µs
Designed for :
- Frequency Converters
- Uninterrupted Power Supply
TrenchStop® and Fieldstop technology for 1200 V applications
offers :
- very tight parameter distribution
- high ruggedness, temperature stable behavior
NPT technology offers easy parallel switching capability due to
positive temperature coefficient in VCE(sat)
Low EMI
Low Gate Charge
Qualified according to JEDEC1 for target applications
Pb-free lead plating; RoHS compliant
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type VCE I
C VCE(sat),Tj=25°C Tj,max Marking Code Package
IGW08T120 1200V 8A 1.7V 150°CG08T120 PG-TO-247-3
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage VCE 1200 V
DC collector current
TC = 25°C
TC = 100°C
IC
16
8
Pulsed collector current, tp limited by Tjmax ICpuls 24
Turn off safe operating area
VCE 1200V, Tj 150°C
- 24
A
Gate-emitter voltage VGE ±20 V
Short circuit withstand time2)
VGE = 15V, VCC 1200V, Tj 150°C
tSC 10
µs
Power dissipation
TC = 25°C
Ptot 70 W
Operating junction temperature Tj -40...+150
Storage temperature Tstg -55...+150
Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260
°C
1 J-STD-020 and JESD-022
2) Allowed number of short circuits: <1000; time between short circuits: >1s.
G
C
E
PG-TO-247-3
IGW08T120
TrenchStop® Series q
Power Semiconductors 2 Rev. 2.6 Nov. 09
Thermal Resistance
Parameter Symbol Conditions Max. Value Unit
Characteristic
IGBT thermal resistance,
junction – case
RthJC 1.7
Thermal resistance,
junction – ambient
RthJA 40
K/W
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Value
Parameter Symbol Conditions
min. typ. max.
Unit
Static Characteristic
Collector-emitter breakdown voltage V(BR)CES VGE=0V, IC=0.5mA 1200 - -
Collector-emitter saturation voltage VCE(sat) VGE = 15V, IC=8A
Tj=25°C
Tj=125°C
Tj=150°C
-
-
-
1.7
2.0
2.2
2.2
-
-
Gate-emitter threshold voltage VGE(th) IC=0.3mA,VCE=VGE 5.0 5.8 6.5
V
Zero gate voltage collector current
ICES VCE=1200V,
VGE=0V
Tj=25°C
Tj=150°C
-
-
-
-
0.2
2.0
mA
Gate-emitter leakage current IGES VCE=0V,VGE=20V - - 100 nA
Transconductance gfs VCE=20V, IC=8A - 5 - S
Integrated gate resistor RGint none
Dynamic Characteristic
Input capacitance Ciss - 600 -
Output capacitance Coss - 36 -
Reverse transfer capacitance Crss
VCE=25V,
VGE=0V,
f=1MHz - 28 -
pF
Gate charge QGate VCC=960V, IC=8A
VGE=15V
- 53 - nC
Internal emitter inductance
measured 5mm (0.197 in.) from case
LE - 13 - nH
Short circuit collector current1) IC(SC) VGE=15V,tSC10µs
VCC = 600V,
Tj = 25°C
- 48 - A
1) Allowed number of short circuits: <1000; time between short circuits: >1s.
IGW08T120
TrenchStop® Series q
Power Semiconductors 3 Rev. 2.6 Nov. 09
Switching Characteristic, Inductive Load, at Tj=25 °C
Value
Parameter Symbol Conditions
min. typ. max.
Unit
IGBT Characteristic
Turn-on delay time td(on) - 40 -
Rise time tr - 23 -
Turn-off delay time td(off) - 450 -
Fall time tf - 70 -
ns
Turn-on energy Eon - 0.67 -
Turn-off energy Eoff - 0.7 -
Total switching energy Ets
Tj=25°C,
VCC=600V,IC=8A,
VGE=-15/15V,
RG=81,
L
σ
2)=180nH,
C
σ
2)=39pF
Energy losses include
“tail” and diode
reverse recovery. - 1.37 -
mJ
Switching Characteristic, Inductive Load, at Tj=150 °C
Value
Parameter Symbol Conditions
min. typ. max.
Unit
IGBT Characteristic
Turn-on delay time td(on) - 40 -
Rise time tr - 26 -
Turn-off delay time td(off) - 570 -
Fall time tf - 140 -
ns
Turn-on energy Eon - 1.08 -
Turn-off energy Eoff - 1.2 -
Total switching energy Ets
Tj=150°C,
VCC=600V, IC=8A,
VGE=-15/15V,
RG= 81,
L
σ
2)=180nH,
C
σ
2)=39pF
Energy losses include
“tail” and diode
reverse recovery. - 2.28 -
mJ
2) Leakage inductance L
σ
and Stray capacity Cσ due to dynamic test circuit in Figure E.
IGW08T120
TrenchStop® Series q
Power Semiconductors 4 Rev. 2.6 Nov. 09
IC, COLLECTOR CURRENT
10Hz 100Hz 1kHz 10kHz 100kHz
0A
5A
10A
15A
2
0A
TC=110°C
TC=80°C
IC, COLLECTOR CURRENT
1V 10V 100V 1000V
0,01A
0,1A
1A
10A
DC
10µs
tp=2µs
50µs
500µs
20ms
150µs
f, SWITCHING FREQUENCY VCE, COLLECTOR-EMITTER VOLTAGE
Figure 1. Collector current as a function of
switching frequency
(Tj 150°C, D = 0.5, VCE = 600V,
VGE = 0/+15V, RG = 81)
Figure 2. Safe operating area
(D = 0, TC = 25°C,
Tj 150°C;VGE=15V)
Ptot, POWER DISSIPATION
25°C 50°C 75°C 100°C 125°C
0W
10W
2
0W
30W
4
0W
50W
6
0W
70W
IC, COLLECTOR CURRENT
25°C 75°C 125°C
0A
5A
10A
15A
TC, CASE TEMPERATURE TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function of
case temperature
(Tj 150°C)
Figure 4. Collector current as a function of
case temperature
(VGE 15V, Tj 150°C)
Ic
Ic
IGW08T120
TrenchStop® Series q
Power Semiconductors 5 Rev. 2.6 Nov. 09
IC, COLLECTOR CURRENT
0V 1V 2V 3V 4V 5V 6V
0A
5A
1
0A
1
5A
2
0A
15V
7V
9V
11V
13V
VGE=17V
IC, COLLECTOR CURRENT
0V 1V 2V 3V 4V 5V 6V
0A
5A
10A
15A
20A
15V
7V
9V
11V
13V
VGE=17V
VCE, COLLECTOR-EMITTER VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristic
(Tj = 25°C)
Figure 6. Typical output characteristic
(Tj = 150°C)
IC, COLLECTOR CURRENT
0V 2V 4V 6V 8V 10V 12V
0A
5A
10A
15A
2
0A
25°C
TJ=150°C
VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE
-50°C 0°C 50°C 100°C
0,0V
0,5V
1,0V
1,5V
2,0V
2,5V
3,0V
IC=8A
IC=15A
IC=5A
IC=2.5A
VGE, GATE-EMITTER VOLTAGE TJ, JUNCTION TEMPERATURE
Figure 7. Typical transfer characteristic
(VCE=20V)
Figure 8. Typical collector-emitter
saturation voltage as a function of
junction temperature
(VGE = 15V)
IGW08T120
TrenchStop® Series q
Power Semiconductors 6 Rev. 2.6 Nov. 09
t, SWITCHING TIMES
5A 10A 15A
1ns
10ns
100ns
tr
td(on)
tf
td(off)
t, SWITCHING TIMES
5
5
0Ω
1
00Ω 150Ω 200Ω
1 ns
10 ns
100 ns
tf
tr
td(off)
td(on)
IC, COLLECTOR CURRENT RG, GATE RESISTOR
Figure 9. Typical switching times as a
function of collector current
(inductive load, TJ=150°C,
VCE=600V, VGE=0/15V, RG=81,
Dynamic test circuit in Figure E)
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, TJ=150°C,
VCE=600V, VGE=0/15V, IC=8A,
Dynamic test circuit in Figure E)
t, SWITCHING TIMES
0°C 50°C 100°C 150°C
10ns
100ns
tr
tf
td(on)
td(off)
VGE(th), GATE-EMITT TRSHOLD VOLTAGE
-50°C 0°C 50°C 100°C 150°C
0V
1V
2V
3V
4V
5V
6V
7V
min.
typ.
max.
TJ, JUNCTION TEMPERATURE TJ, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE=600V,
VGE=0/15V, IC=8A, RG=81,
Dynamic test circuit in Figure E)
Figure 12. Gate-emitter threshold voltage as
a function of junction temperature
(IC = 0.3mA)
IGW08T120
TrenchStop® Series q
Power Semiconductors 7 Rev. 2.6 Nov. 09
E, SWITCHING ENERGY LOSSES
5A 10A 15A
0
,0mJ
2
,0mJ
4
,0mJ
6
,0mJ
Ets*
Eoff
*) Eon and Etsinclude losses
due to diode recovery
Eon*
E, SWITCHING ENERGY LOSSES
5Ω 50Ω 100 150Ω 200Ω
0,0 mJ
0,4 mJ
0,8 mJ
1,2 mJ
1,6 mJ
2,0 mJ
2,4 mJ
2,8 mJ
3,2 mJ Ets*
Eon*
*) Eon and Ets include losses
due to diode recovery
Eoff
IC, COLLECTOR CURRENT RG, GATE RESISTOR
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, TJ=150°C,
VCE=600V, VGE=0/15V, RG=81,
Dynamic test circuit in Figure E)
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, TJ=150°C,
VCE=600V, VGE=0/15V, IC=8A,
Dynamic test circuit in Figure E)
E, SWITCHING ENERGY LOSSES
25°C 50°C 75°C 100°C 125°C
.0mJ
.5mJ
1.0mJ
1.5mJ
.0mJ
Ets*
Eon*
*) Eon and Ets include losses
due to diode recovery
Eoff
E, SWITCHING ENERGY LOSSES
400V 500V 600V 700V 800V
0mJ
1mJ
2mJ
3mJ
Ets*
Eon*
*) Eon and Ets include losses
due to diode recovery
Eoff
TJ, JUNCTION TEMPERATURE VCE, COLLECTOR-EMITTER VOLTAGE
Figure 15. Typical switching energy losses
as a function of junction
temperature
(inductive load, VCE=600V,
VGE=0/15V, IC=8A, RG=81,
Dynamic test circuit in Figure E)
Figure 16. Typical switching energy losses
as a function of collector emitter
voltage
(inductive load, TJ=150°C,
VGE=0/15V, IC=8A, RG=81,
Dynamic test circuit in Figure E)
Eon*
Eoff
Eon*
Eoff
Eon*
Eoff
IGW08T120
TrenchStop® Series q
Power Semiconductors 8 Rev. 2.6 Nov. 09
VGE, GATE-EMITTER VOLTAGE
0nC 25nC 50nC
0V
5V
10V
15V
960V
240V
c, CAPACITANCE
0V 10V 20V
10pF
100pF
1nF
Crss
Coss
Ciss
QGE, GATE CHARGE VCE, COLLECTOR-EMITTER VOLTAGE
Figure 17. Typical gate charge
(IC=8 A)
Figure 18. Typical capacitance as a function
of collector-emitter voltage
(VGE=0V, f = 1 MHz)
tSC, SHORT CIRCUIT WITHSTAND TIME
12V 14V 16V
0µs
5µs
10µs
15µs
IC(sc), short circuit COLLECTOR CURRENT
12V 14V 16V 18V
0A
25A
50A
75A
VGE, GATE-EMITTETR VOLTAGE VGE, GATE-EMITTETR VOLTAGE
Figure 19. Short circuit withstand time as a
function of gate-emitter voltage
(VCE=600V, start at TJ=25°C)
Figure 20. Typical short circuit collector
current as a function of gate-
emitter voltage
(VCE 600V, Tj 150°C)
IGW08T120
TrenchStop® Series q
Power Semiconductors 9 Rev. 2.6 Nov. 09
VCE, COLLECTOR-EMITTER VOLTAGE
0V
2
00V
4
00V
6
00V
0A
10A
20A
30A
1.5us
1us
0.5us
0us
IC
VCE
IC, COLLECTOR CURRENT
0V
200V
400V
600V
0A
10A
2
0A
3
0A
1.5us1us0.5us
0us
IC
VCE
t, TIME t, TIME
Figure 21. Typical turn on behavior
(VGE=0/15V, RG=81, Tj = 150°C,
Dynamic test circuit in Figure E)
Figure 22. Typical turn off behavior
(VGE=15/0V, RG=81, Tj = 150°C,
Dynamic test circuit in Figure E)
ZthJC, TRANSIENT THERMAL RESISTANCE
10µs 100µs 1ms 10ms 100ms
1
0-2K/W
1
0-1K/W
100K/W
single pulse
0.01
0.02
0.05
0.1
0.2
D=0.5
tP, PULSE WIDTH
Figure 23. IGBT transient thermal resistance
(D = tp / T)
R,(K/W)
τ
, (s)
0.187 1.73*10-1
0.575 2.75*10-2
0.589 2.57*10-3
0.350 2.71*10-4
C1=
τ
1/R1
R1R2
C2=
τ
2/R2
IGW08T120
TrenchStop® Series q
Power Semiconductors 10 Rev. 2.6 Nov. 09
IGW08T120
TrenchStop® Series q
Power Semiconductors 11 Rev. 2.6 Nov. 09
Figure A. Definition of switching times
Figure B. Definition of switching losses
p(t)
12 n
T(t)
j
τ
1
1
τ
2
2
n
n
τ
T
C
rr
r
r
rr
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Leakage inductance L
σ
=180nH
and Stray capacity Cσ =39pF.
IGW08T120
TrenchStop® Series q
Power Semiconductors 12 Rev. 2.6 Nov. 09
Edition 2006-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 11/18/09.
All Rights Reserved.
Attention please!
The information given in this data sheet shall in no event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical
values stated herein and/or any information regarding the application of the device, Infineon Technologies
hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.