6/23/99
www.irf.com 1
IRFP450A
SMPS MOSFET
HEXFET® Power MOSFET
lSwitch Mode Power Supply ( SMPS )
lUninterruptable Power Supply
lHigh speed power switching
Benefits
Applications
lLow Gate Charge Qg results in Simple
Drive Requirement
lImproved Gate, Avalanche and Dynamic
dv/dt Ruggedness
lFully Characterized Capacitance and
Avalanche Voltage and Current
VDSS Rds(on) max ID
500V 0.4014A
Typical SMPS Topologies:
l Two Transistor Forward
SDG
l Half Bridge, Full Bridge
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 14
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 8.7 A
IDM Pulsed Drain Current 56
PD @TC = 25°C Power Dissipation 190 W
Linear Derating Factor 1.5 W/°C
VGS Gate-to-Source Voltage ± 30 V
dv/dt Peak Diode Recovery dv/dt 4.1 V/ns
TJOperating Junction and -55 to + 150
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case ) °C
Mounting torqe, 6-32 or M3 screw 10 lbf•in (1.1N•m)
Absolute Maximum Ratings
lEffective Coss Specified ( See AN 1001)
TO-247AC
PD -91884
Notes through are on page 8
l PFC Boost
IRFP450A
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
gfs Forward Transconductance 7.8 ––– ––– S VDS = 50V, ID = 8.4A
QgTotal Gate Charge –– –– 64 I D = 14A
Qgs Gate-to-Source Charge ––– ––– 16 nC VDS = 400V
Qgd Gate-to-Drain ("Miller") Charge ––– ––– 26 VGS = 10V, See Fig. 6 and 13
td(on) Turn-On Delay Time ––– 15 ––– VDD = 250V
trRise Time ––– 36 ––– ID = 14A
td(off) Turn-Off Delay Time ––– 35 ––– RG = 6.2
tfFall Time ––– 29 ––– RD = 17,See Fig. 10
Ciss Input Capacitance ––– 2038 ––– VGS = 0V
Coss Output Capacitance ––– 307 ––– VDS = 25V
Crss Reverse Transfer Capacitance ––– 10 ––– p F ƒ = 1.0MHz, See Fig. 5
Coss Output Capacitance ––– 2859 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss Output Capacitance ––– 81 ––– VGS = 0V, VDS = 400V, ƒ = 1.0MHz
Coss eff. Effective Output Capacitance ––– 96 ––– VGS = 0V, VDS = 0V to 400V
Static @ TJ = 25°C (unless otherwise specified)
Dynamic @ TJ = 25°C (unless otherwise specified)
ns
Parameter Typ. Max. Units
EAS Single Pulse Avalanche Energy––– 760 mJ
IAR Avalanche Current––– 14 A
EAR Repetitive Avalanche Energy––– 19 mJ
Avalanche Characteristics
S
D
G
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) ––– ––– showing the
ISM Pulsed Source Current integral reverse
(Body Diode)
––– ––– p-n junction diode.
VSD Diode Forward Voltage ––– –– 1.4 V TJ = 25°C, IS = 14A, VGS = 0V
trr Reverse Recovery Time ––– 487 731 ns TJ = 25°C, IF = 14A
Qrr Reverse RecoveryCharge ––– 3.9 5.8 µC di/dt = 100A/µs
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Diode Characteristics
14
56 A
Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 0.65
RθCS Case-to-Sink, Flat, Greased Surface 0.24 ––– °C/W
RθJA Junction-to-Ambient 40
Thermal Resistance
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 500 –– –– V VGS = 0V, ID = 250µA
V(BR)DSS/TJBreakdown Voltage Temp. Coefficient –– 0.58 ––– V/°C Reference to 25°C, ID = 1mA
RDS(on) Static Drain-to-Source On-Resistance ––– ––– 0.40 VGS = 10V, ID = 8.4A
VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA
––– ––– 25 µA VDS = 500V, VGS = 0V
––– ––– 250 VDS = 400V, VGS = 0V, TJ = 125°C
Gate-to-Source Forward Leakage ––– ––– 100 VGS = 30V
Gate-to-Source Reverse Leakage ––– ––– -100 nA VGS = -30V
IGSS
IDSS Drain-to-Source Leakage Current
IRFP450A
www.irf.com 3
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
-60 -40 -20 0 20 40 60 80 100 120 140 160
0.0
0.5
1.0
1.5
2.0
2.5
3.0
T , Junction Temperature( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
13A
0.01
0.1
1
10
100
0.1 1 10 100
20µs PULSE WIDTH
T = 25 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
0.1
1
10
100
0.1 1 10 100
20µs PULSE WIDTH
T = 150 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
0.1
1
10
100
4.0 5.0 6.0 7.0 8.0 9.0 10.0
V = 50V
20µs PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J°
T = 150 C
J°
14A
IRFP450A
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
0.1
1
10
100
0.2 0.4 0.6 0.8 1.0 1.2 1.4
V ,Source-to-Drain Volta
g
e (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J°
T = 150 C
J°
015 30 45 60 75
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
13A
V = 100V
DS
V = 250V
DS
V = 400V
DS
1
10
100
1000
10000
100000
1 10 100 1000
C, Capacitance (pF)
DS
V , Dra in-to-Source Volta
g
e
(
V
)
A
V = 0V
,
f = 1 M H z
C = C + C
,
C S H O RTED
C = C
C = C + C
GS
is s
g
s
g
d ds
rss
g
d
oss ds
g
d
C
iss
C
oss
C
rss
14A
1
10
100
10 100 1000
OPERATION IN THIS AREA LIMITED
BY RDS(on)
Sin
g
le Pulse
T
T = 150 C
= 25 C
°°
J
C
V , Drain-to-Source Voltage (V)
I , Drain Current (A)I , Drain Current (A)
DS
D
10us
100us
1ms
10ms
IRFP450A
www.irf.com 5
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RGD.U.T.
10V
+
-
VDD
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
25 50 75 100 125 150
0
2
4
6
8
10
12
14
T , Case Temperature ( C)
I , Drain Current (A)
°
C
D
0.001
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1
Notes:
1. Duty factor D = t / t
2. Peak T =P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
IRFP450A
6www.irf.com
Q
G
Q
GS
Q
GD
V
G
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
Fig 12d. Typical Drain-to-Source Voltage
Vs. Avalanche Current
540
560
580
600
620
640
02468101214
A
DSav
av
I , Av alanc he Current (A)
V , Avalan c he V olta ge (V)
25 50 75 100 125 150
0
400
800
1200
1600
Starting T , Junction Temperature( C)
E , Single Pulse Avalanche Energy (mJ)
J
AS
°
ID
TOP
BOTTOM
6.3A
8.9A
14A
IRFP450A
www.irf.com 7
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P.W.
Period
+
-
+
+
+
-
-
-
Fig 14. For N-Channel HEXFETS
* VGS = 5V for Logic Level Devices
Peak Diode Recovery dv/dt Test Circuit
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
*
IRFP450A
8www.irf.com
Part Marking Information
TO-247AC
Package Outline
TO-247AC Outline
Dimensions are shown in millimeters (inches)
LEAD ASSIGNMENTS
NOTES:
- D - 5 .30 (.209)
4 .70 (.185)
2.50 (.089)
1.50 (.059)
4
3X 0.80 (.031)
0.40 (.016)
2.60 (.102)
2.20 (.087)
3.40 (.133)
3.00 (.118)
3X
0.25 (.010) MCA
S
4.30 (.170)
3.70 (.145)
- C -
2X 5.50 ( .21 7)
4.50 ( .17 7)
5 .50 (.217)
0.25 (.010)
1.40 (.056)
1.00 (.039)
3.65 (.143)
3.55 (.140) D
MMB
- A -
15.90 (.626)
15.30 (.602)
- B -
123
2 0.30 (.800)
1 9.70 (.775)
14.80 (.583)
14.20 (.559)
2.40 (.094)
2.00 (.079)
2X
2X
5.45 (.2 1 5)
1 DIMENSIONING & TOLERANCING
PER A N SI Y14.5M, 1982.
2 C ONTROLLING DIMENSION : INCH.
3 CONFORMS TO JEDEC OUTLINE
TO-247-AC .
1 - GATE
2 - DRAIN
3 - SOURCE
4 - DRAIN
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936
http://www.irf.com/ Data and specifications subject to change without notice. 6/99
INTERNATIONAL
RE CTIF IER
LO GO
A SSEMBLY
LOT CODE
EXAMPLE : THIS IS AN IRFPE30
WITH ASSEMBLY
L OT COD E 3A 1Q PART NU MBER
DATE COD E
(YYW W)
YY = YEAR
WW WEEK
3A1Q 9302
IRFPE30
A
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
ISD 14A, di/dt 130A/µs, VDD V(BR)DSS,
TJ 150°C
Notes:
Starting TJ = 25°C, L =7.8mH
RG = 25, IAS = 14A. (See Figure 12)
Pulse width 300µs; duty cycle 2%.
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS