Code No: 1C3F4736 Total Pages Page 17 Product Standards Part No. AN8013SH Package Code No. SSOP010-P-0225A Analogue LSI Business Unit Semiconductor Company Matsushita Electric Industrial Co., Ltd. Established by Applied by Checked by Prepared by . . / K Kent oly Het rrana toe Sb Marae OT Mnorita K.Komichi M.Hiramatsu JiHara J.Morita 2006-08-24 Established Revised 210801300106070 Semiconductor Company, Matsushita Electric Industrial Co., Ltd.AN8013SH Prod uct Standards Total Pages Page 17 2 Contents | ON =<) 3 | ey) (0-5 ee 3 | V0) 9)|(0r= 160) 9 ES 3 MM PACKAGE once cece EEE EEE EE EEL E Eee ee EEE Ener EEE nna 3 do) EELS EEE 3 Mi Application Circuit Example ...... ere Ener ree nerenenes 4 ME Block Diagram 20.0.0... cece cece eee eee eee EEE EAN e eee ee EE EEE EEE EEE EEE EEE EE Eee 5 ME Pin DeSCrIPtIONS 02.0... eee EE EEE EEE ene eee EEE eer Eee renee enn rE eee 6 MI Absolute Maximum RatingS ......... 2.0 ee enn rene eee een e ee tee eee eee een eea ee eee see nntane ene teeree ees eees 7 Wi Operating Supply Voltage Range ......... 00... cee cee ee eee renee cree eee enenennea teen ereeree rere 7 M Recommended Operating Conditions 2.0.0.0... eect ee eee nE ere e rene nee nen en nen none ent eee 7 | BSP orca tors) Oda = Uae e10=) fo) | ee 8 Wi Electrical Characteristics (Reference values for CESIQN) ...... ke cece ece cee cee cee ee eee eee eee nee eee eee eee eae ene enents 9 MI Test Circuit Diagram ......... ccc ccc cece ce cree ee tee eee ence eee EE Crean eee nnn EEE EEA UD Seed nea cena ne eee ere nn eae eet nn cee tees 10 Mi Electrical Characteristics Test Procedures 2.0.2.0... cece cece cece eee reer eee ee enn een Ene eer Ene nee EEE 14 HB Technical Data ssiscscasenneacssncss cocewonaweawnss can tewsen eremensamener sane venenannennenanoacaee ads exownn comer eee eanienes 17 2006-08-24 Established Revised 210801300206070 Semiconductor Company, Matsushita Electric Industrial Co., Ltd.AN8013SH Prod uct Standards Total Pages Page 17 3 AN8013SH Single-channel step-up or step-down DC-DC converter control IC M@ Overview AN8013SH is a single-channel DC-DC converter control IC using the PWM method. This IC implements DC-DC converter that provide a single arbitrary output voltage that is either a stepped-up or stepped-down level. It features a wide operating supply voltage range, low power, and a built-in overcurrent protection circuit to protect the switching transistor from damage or destruction. The AN8013SH is provided in a 0.5 mm pitch 10-pin surface mounting package and is optimal for use in miniature high-efficiency portable power supplies. @ Features Wide operating supply voltage range (3.6 V to 34 V) Small consumption current (2.4 mA typical) Supports control over a wide output frequency range: 20kHz to 500 kHz. Built-in pulse-by pulse overcurrent protection circuit (Detection voltage: Vec 100 mV) e Built-in timer latch short-circuit protection circuit (charge current : 1.3 WA typical) Incorporating an under-voltage lock-out circuit (U-V.L.O) Built-in reference voltage circuit (Error amplifier reference input: 0.75 V (allowance: +4%)) Output block is open-collector (darlington) type. High absolute maximum rating of output current (100 mA) Duty ratio with small sample-to-sample variations (55% +5%) i Applications Switching mode power supply units (in portable equipment and other applications) Mi Package 10 pin Plastic Shrink Small Outline Package (SSOP Type) Hi Type Silicon Monolithic Bipolar IC 2006-08-24 Established Revised 210801300306070 Semiconductor Company, Matsushita Electric Industrial Co., Ltd.AN8013SH Product Standards Total Pages Page 17 4 Hi Application Circuit Example 1. Step-down IN ie OUT NW +5 V = Wf 262 kQ i , =11kQ aT = = 100 kQ AA vv | 0.001 pF 10 9 8 7 6 VCC OUT GND IN- FB f= 200 kHz Du= 50% CLM RT CT S.C.P DTC 1 2 | 3 4 | 5 | ISkQ 150 all 0.01 ee P ] " Joosery 91k 2. Step-up IN } OUT ANN LOD. >| 24+12V 150 kQ am 10kQ re 100 kQ AN |i 0.001 LE 10 9 8 7 6 VCC OUT GND IN- FB f= 200 kHz Du=50% CLM RT CT S.C.P DTC 1 2 3 | 4| 5 | 15 kQ 150 pF> 0.01 ve | tH joe: ad 91kQ 2006-08-24 Established Revised 210801300406070 Semiconductor Company, Matsushita Electric Industrial Co., Ltd.AN8013SH P rod Uu ct Sta n d a rd S Total Pages Page 17 5 li Block Diagram VCC CLM DTC CT| RT 10 1 > | OSC Reference OSL T Voltage a O1V PWM S R LATCH FB | 6 4 [ ose. + GND IN-|7 Error Amp. VREF[> | 1.0.75 V 190V O78 V S RI] |R- Q LATCH U.V.L.O lf 2006-08-24 Established Revised 210801300506070 Semiconductor Company, Matsushita Electric Industrial Co., Ltd.AN8013SH Product Standards [totiPages [Page 17 6 @ Pin Descriptions Pin No. Pin name Type Description 1 CLM Input Overcurrent protection input 2) RT _ Oscillator frequency setup resistor connection 3 CT - Oscillator frequency setup capacitor connection 4 S.C.P Capacitor connection for delay short-circuit protection . 5 DTC Input i Dead time control pin 6 FB - Saat Output of error amplifier 7 IN- Input Inverted input for error amplifier 8 GND Ground Ground pin 9 OUT Output Open collector output 10 VCC Power supply | Supply voltage application 2006-08-24 Established Revised 210801300606070 Semiconductor Company, Matsushita Electric Industrial Co., Ltd.AN8013SH Prod uct Standards Total Pages Page 17 7 i Absolute Maximum Ratings 7 Parameter Symbol Rating Unit Notes 1 | Supply voltage Voc 35 Vv *] 2 | Supply current lec mA (3 |Powerdissipation | Pr | no mw | #2, 4 | Operating ambient temperature Topr ~30 to +85 C *3 5 Storage temperature Tstg 55 to +125 C 3 6 | CLM pin allowable applied voltage Voim 35 Vv 7 | Error amplifier allowable input voltage Vi 0.3 to 2.5 Vv _ 8 | DTC pin allowable applied voltage Vore 2.5 Vv _ 9 | OUT pin allowable applied voltage Vour 35 Vv _ 10 | Output current Ip 100 mA Notes)*1 : The values under the condition not exceeding the above absolute maximum ratings and the power dissipation. *2 : The power dissipation shown is the value at T, = 85C for the independent (unmounted) IC package. When using this IC, refer to the P,,-T, diagram of the package standard page 4 and use under the condition not exceeding the allowable value. *3 : Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for T, = 25C. i Operating supply voltage range Parameter Symbol! Range Unit Notes Supply voltage range Vee 3.6 to 34 Vv * Note) *: The values under the condition not exceeding the above absolute maximum ratings and the power dissipation. Hi Recommended Operating Conditions Parameter Symbol Min Max Unit Notes Supply voltage (0 to 3.6 V) rise time tte) 10 Ls z Collector output voltage Vour 34 Vv * Collector output current lour _ 50 mA Timing capacitance Cy 100 1 800 pF te Timing resistance Rr 5.1 15 kQ * Output frequency four 20 500 kHz * cogent can | 108 - eo: Note) *: Do not apply current or voltage from external source to any pin not listed above, In the circuit current, (+) means the current flowing into IC and (-) means the current flowing out of IC, 2006-08-24 Established Revised 210801300706070 Semiconductor Company, Matsushita Electric Industrial Co., Ltd.AN8013SH Prod uct Standards Total Pages Page 17 * 8 @ Electrical Characteristics at V..= 12 V, C, = 150 pF, Ry = 15 kQ Note) T, = 25C+2C unless otherwise specified. Ny Parameter Symbol | (ost, Conditions 7 aoe Unit | Notes : in | Typ | Max U.V.L.O. Block 1 |U.V.L.O. start voltage Vuon 1 2.9 | 3.2 | 3.5 Vv 2 | Hysteresis width Vuys 1 od 60 | 400 | mV Error Amplifier Block 3 | Input threshold voltage Von 2 | Voltage follower 0.72 | 0.75 | 0.78 Vv 4 | Line regulation Vay 2 ae oe 3A V 2 8 mV 5 | Input current Iz 3 -500 | -35 | nA 6 | High-level output voltage Ven 3 2.0 | = Vv 7 | Low-level output voltage Ver 3 | 03 PWM Comparator Block 8 | High-level input threshold voltage Vory 4 | Duty ratio 100% 1.2 Vv 9 | Low-level input threshold voltage Vor. 4 Duty ratio 0% _ _ 0.6 10 | Input current Iptc 4 -12 | -11 | -10 | pA Output Block 11 | Output frequency four 5 185 | 205 | 225 | kHz 12 | Output duty ratio Dy 5 Rote = 91 kQ 50 55 60 % 13 | Output saturation voltage Vigaty 4 |Ip=50mA | 0.9 | 1.2 Vv 14 | Output leak current lou 4 mh ilies | | 10 | pa Short-circuit Protection Block 15 | Input threshold voltage Veruec 6 _- 0.7 | 0.75 | 0.8 Vv 16 | Input standby voltage Votpy 6 | 120 | mV 17 | Input latch voltage Vin 6 _ | 120 | mV 18 | Charging current long 6 = -1.6 | -13 | -10] pA Overcurrent Protection Block 19 | Threshold voltage Vom 7 _ Hs 3 is mV The Whole Circuit 20 | Total current consumption! lecl | 8 | | 2.4 | 3.5 | mA | 2006-08-24 Established Revised 210801300806070 Semiconductor Company, Matsushita Electric Industrial Co., Ltd.AN8013SH Prod uct Standards Total Pages Page 17 9 @ Electrical Characteristics (Reference values for design) at Voc = 12 V, Cp = 150 pF, Rp = 15 kQ Note) T, =25C+2C unless otherwise specified. Reference No Parameter Symbol chants Conditions values Unit | Notes Min | Typ | Max Error Amplifier Block 1 mut iireshold voltage temperature Val 2 yes oe laf % | ae sireshold voltage temperature V2 2 one eee |la] % *] 23 | Output sink current Isnvx 3 Vyp = 0.9 V 8 _ mA *] 24 | Output source current Isource 3 | Vep=0.9 V fe -120) LA *] 25 | Open-loop gain AG 3 |} 7}; dB *] Output Block : 26 | Maximum oscillation frequency four@max) 5 |Cy=120 pF, Ry =5.1kQ |} 500| kHz | *1 27 _| Frequency supply voltage fy 5 | Voc =3.6 V to 34 V /+}] % | *1 characteristics 2g. | Frequency temperature ful 5 |Ta=-30t0 25C /e}] % | characteristics 1 29 | frequency temperature f42 5 |Ta=25 to 85C |23/|] % | *1 characteristics 2 30 | RT pin voltage Ver 4 _ |059) Vv *] Short-circuit Protection Block 31 | Comparator threshold voltage | Vou 6 | | _ 1.90 | _ | Vv | *] Overcurrent Protection Block 32 | Delay time | trv | 7 | = | | 200] |] os | The Whole Circuit - 33. | Total consumption current 2 | tec2 | 8 [RT=5.1k0 |] |34]] ma | Note) *1: The above characteristics are reference values for design of the IC and are not guaranteed by inspection. If a problem does occur related to these characteristics, Matsushita will respond in good faith to user concerns. 2006-08-24 Established Revised 210801300906070 Semiconductor Company, Matsushita Electric Industrial Co., Ltd.AN8013SH Prod uct Standards Total Pages Page 17 10 Hf Test Circuit Diagram 1. Test Circuit 1 | 600 2 : Vo 1.6 vy) 10 9 8 7 6 | VCC OUT GND IN- FB CLM RT CT $.C.P DTC 1 2 3 4 5 Ry Ver L Vore L ISkQ 04V L.6V 2. Test Circuit 2 10 ") Vee x Vie b 10 9 8 7 6 VCC OUT GND IN- FB CLM RT CT S.C.P DTC 1 2 3 4 5 Ry Ver ake 15 kQ 0.4V 2006-08-24 Established Revised 210801301006070 Semiconductor Company, Matsushita Electric Industrial Co., Ltd.Product Standards AN8013SH Total Pages Page 17 11 @ Test Circuit Diagram (continued) 3. Test Circuit 3 10 uF Voc 1 = ' = Vey Vv ' + Tr Is ay" b SWI 10 9 8 7] 6 | vcc OUT GND IN- FB CLM RT CT 8.C.P DTC | 2 3 4 5 Ry = Ver L ISkQS= gay | a 4. Test Circuit 4 50mA Voy Bs 1lOuF | Vee | 34V 1 Vo Vv - Fa + ; 12v | em = to ous | sw22 pbc 10 9 8 7 6 VCC OUT GND IN- FB CLM RT CT S.C.P DTC 1 2 3 | 4 5 | : ' Swi li Ver Rr = Er vc L Ver i ISkQ | 459 pF T 0.4V Vore ar 2006-08-24 Established Revised 210801301106070 Semiconductor Company, Matsushita Electric Industrial Co., Lid.Product Standards AN8013SH Total Pages Page 7 12 Hf Test Circuit Diagram (continued) 5. Test Circuit 5 6. Test Circuit 6 2006-08-24 10 wF L Wee y ~ | | 600 2 = 4 0 10 9 8 7 6 | VCC OUT GND IN- FB CLM RT CT S.C.P DTC 1 2 3 4 5 Ry Zz Cy F Rore ar 10 uF | Vee | Ven 4 ? VT [oat 7 4 Vo 10 9 8 yi 6 vcc OUT GND IN- FB CLM RT CT .C.P DTC 1 2 3 4 5 re Ver = we i v4 _LVorte 0.4 ' 6 Vsep T Oise a boe Established Revised 210801301206070 Semiconductor Company, Matsushita Electric Industrial Co., LtdAN8013SH Prod uct Standards Total Pages Page 17 13 Mi Test Circuit Diagram (continued) 7. Test Circuit 7 10 uF | Vee | Vin | 1 a 10 9 8 7 6 | vcc OUT GND IN- FB R= CLM RT CT S.C.P DTIC 1| 2 3| 4 5 SWI : AP avi So ik VoreL i Lee [oe 16V rr 8. Test Circuit 8 10 uF L Voc Vv A tcc 10 9] 8 7 6 vec OUT GND IN- ; CLM RT CT S.C.P DTC 1 2 3 4 5 Ver -L By 0.4V ae 2006-08-24 Established Revised 210801301306070 Semiconductor Company, Matsushita Electric Industrial Co., Ltd.Product Standards AN8013SH Total Pages Page 17 14 Hi Electrical Characteristics Test Procedures 1. Test Circuit Cc No. Parameter Conditions Measuring Method 1 | U.V.L.O. start voltage Ver = 0.3 V; Vprc= 1.6 V Vip = 1.6 V Measure the Vcc voltage when the Vy changes from High to Low level while increasing the Vcc voltage gradually. 2 | Hysteresis width Vor =0.3 V; Vpre = 1.6 V Vig = 1.6 V Vuys= Vuon~ Vuorr _| a * Vo > Veo Vuor Vuon 2. Test Circuit2 Cc No. Parameter Conditions Measuring Method 3 | Input threshold voltage Veo = 12. V, Ver = 0.4 V Measure the voltage of Vpp. 4 | Line regulation Voc = 3.6 V to 34 V, Ver =0.4-V Voc = 12 V, Ta=-30 to 25C Check the regulation of Vgp. Check the regulation of Vrp. 14 Input threshold voltage temperature characteristics 1 yy) Input threshold voltage temperature characteristics 2 Veco = 12 V, Ta=25 to 85C Check the regulation of Vpn. 3. Test Circuit3 C No. Parameter Conditions Measuring Method 5 | Input current 6 | High-level output voltage SW1 =a, Voc = 12 V, Ver = 0.4 V Vin= 0.8 V Measure the current of 1, . SW1 =a, Vec= 12 V; Vep = 0.4. V Vw=0.7V Measure the voltage of Vo. 7 | Low-level output voltage SWl= a, Vec= 12 Vv, Vor = 0.4 V Vin= 0.8 V Measure the voltage of Vo. SW1=b, Voc = 12 V, Ver = 0.4 V 23 | Output sink current Vin=0.8 V, Ven= 0.9 V Measure the current of Ign. SW1=b, Vec = 12 V, Ver = 0.4.V 24 | Output source current Vin=0.7 V, Vap= 0.9 V Measure the current of Ipg. Ag= logio{(Vin Vi. VAVin} Vo 25 |lOpen-loop gain SW1 =a, Voe=12 V, Ver = 0.4-V Ve Var, ma AVes | Ven 2006-08-24 Established Revised 210801301406070 Semiconductor Company, Matsushita Electric Industrial Co., Ltd.Product Standards AN8013SH Total Pages Page 17 15 M@ Electrical Characteristics Test Procedures (continued) 4. Test Circuit4 No Parameter Conditions Measuring Method 8 High-level input threshold |SW1 =a, SW2=a, Vec= 12 V, Measure the voltage of Vprc when the output duty voltage Vip = 1.6 V ratio = 100%. 9 Low-level input threshold SW1 =a, SW2=a, Veo = 12 V, Measure the voltage of Vprc when the output duty voltage Vep = 1.6 V ratio = 0%. SW1 =b, SW2 =a, Vec = 12 V, 10 | Input current Vig = 1.6 V; Vore = 0.2 V Measure the current of Ipze - . SW1 =b, SW2 =b, Voc = 12 V, 13 | Output saturation voltage Van = 1.6 V. Vote = 1.6 V Measure the voltage of Vo. SW1 =b, SW2 =c, Vee = 12 V, 14 | Output leak current Vep = 0 V, Vpre = 0.2 V Measure the current of Ip; z- : SW1 =b, SW2 =a, Vee = 12 V, 30 |RT pin voltage Vin = 0 V. Vpre= 1.6 V Measure the voltage of Vpr. 5. Test Circuit , Parameter Conditions Measuring Method Voc = 12 V, Veg = 1.6 V, _ 1 Li | Output frequency Ry = 15 kQ, Cp= 150 pF, Rope = 91 kQ four= > (kHz) = Dy= x 100 (%) . Voc = 12 V, Vip = 1.6 V, 12. | Output duty ratio Ry = 15 kQ, Cp= 150 pE, Ryre = 91 kQ Maximum oscillation Veco = 12 V, Vip = L.6V, - ag 26 Il pequency Ry = 15 kQ, Cy = 120 pF, Rpre= 33 ka | four= Tp KHZ) Frequency supply voltage Veco = 3.6 V > 34 V, Vig = 1.6 V, . 27 | haracteristics Ry = 15 kQ, Cp= 150 pF, Rope = 91 ka | Check the regulation of four. Frequency temperature Voc = 12 V, Vip = 1.6 V; 2g | 7 requeney temp Rr = 15 kQ, Cy = 150 pF, Ryze = 91 kQ | Check the regulation of foyr. characteristics 1 _ Ta =30 to 25C Frequency temperature Veo = 12 V, Vip = 1.6 V, 29 | reaueney temp Rr= 15 kQ, Cy= 150 pF, Rpre= 91 kQ | Check the regulation of four. characteristics 2 Ta = 25 to 85C 2006-08-24 Established Revised 210801301506070 Semiconductor Company, Matsushita Electric Industrial Co., Ltd.Product Standards AN8013SH Total Pages Page 17 16 M@ Electrical Characteristics Test Procedures (continued) 6. Test Circuit6 Cc No. Parameter Conditions Measuring Method 15 | Input threshold voltage SW1 =a, Veo = 12 V, Ver = 0.4 V Vpre= 1.6 V; Ven = 1.6 V Measure the Vocp voltage when Vo changes from low to high level while increasing the Vgcp voltage gradually. 16 | Input standby voltage SW1=b, Vec= 12 V; Ver = 0.4. V Vore = 1.6 V, Ven = 1.6 V 17 | Input latch voltage SW1=b, Veo = 12 V, Vep = 0.4-V Vore= 1.6 V, Vpp = 2.0 V Measure the voltage of V, . Measure the voltage of V,. 18 | Charging current SW1 =, Voc = 12. V, Ver = 0.4 V Vote = 1.6 V, Vrp = 2.0 V Measure the current of Igcp. Comparator threshold i voltage SW1=b, Voc = 12 V, Vep = 0.4 V Vore = 1.6 V Measure the Vy, voltage when the V,; changes from low to high level while increasing the Vp, voltage gradually from 1.6 V. 7. Test Circuit7 Cc No. Parameter Conditions Measuring Method 19 | Threshold voltage SW1=a, Voc = 12 V, Ver = 0.4 V Vore= L6 V, Vrp = 1.6 V Measure the I, current when the Vy changes from low to high level while increasing the I, current gradually. Vem= TR 32 | Delay time SW1=b, Voc = 12 V, Vor = 0.4 V Vore = 1.6 V, Vpp = 1.6 V CLM 12 11.8 V Measure the tppy- 8. Test Circuit8 Cc No. Parameter Conditions Measuring Method 20 | Total consumption current | Voc = 12 Vs Ver = 0.4 V Rp=15kQ Measure the current of Ic. 33 | Total consumption current 2 Vee = 12 V, Ver = 0.4 V Rp=5.1kQ Measure the current of Ic. 2006-08-24 Established Revised 210801301606070 Semiconductor Company, Matsushita Electric Industrial Co., Ltd.AN8013SH Prod uct Standards Total Pages Page 17 17 @ Technical Data e Timing chart 1. Normal operation Vv. S.C.P comparator x Error amplifier output Dead time contro! Output short-circuit _ threshold voltage waveform [- 1.85V osm tnannnnnnnnininy ie - nn scaeenieppeeione j Triangular wave f j A AAA j VET TV VV Nav Soft start operation S.C.P input threshold voltage 0.75 V S.C.P pin voltage 2. Overcurrent protection operation Error amplifier output 14 (FB) AS a eater AV Triangular wave 0.4V (CT) "HY Output transistor + collector 1 waveform Lf op (OUT) Vec Overcurrent protection input ea S| Voc100 mV (CLM) Tory ? Delay time Latch circuit 'H! set signal a Latch circuit H Reset signal Mm 2006-08-24 Established Revised 210801301706070 Semiconductor Company, Matsushita Electric Industrial Co., Ltd.Regulations No. : $C3S0778 Total Pages Page 6 PACKAGE STANDARDS Package Code SSOP010-P-0225A Semiconductor Company Matsushita Electric Industrial Co., Ltd. Established by Applied by Checked by Prepared by K.Komichi H.Yoshida M.Okajima M.ltoh Established: 2004-01-19 Revised > 2007-02-13PACKAGE STANDARDS SSOP010-P-0225A Total Pages Page 6 1. Outline Drawing - 3.00 $0.20 10 6 GA +n 40 J) 20.20 HAMA a Unittmm \ SEATING PLANE \ \ SEATING PLANE Weight 43 mg Body Material Epoxy Resin Lead Material : Cu Alloy Lead Finish Method: SnBi Plating Established: 2004-01-19 Revised > 2007-02-13 Semiconductor Company, Matsushita Electric Industrial Co., Ltd.PACKAGE STANDARDS SSOP010-P-0225A Total Pages Page 6 3 2. Package Structure (Technical Report) Chip Material si q@) Leadframe material Cu alloy Q Inner lead surface Ag plating @) Outer lead surface SnBi plating @ : Method Resin adhesive method Chip mount Material Adhesive material Method Thermo-compression bonding Wirebond Material Au Method Multiplunger molding Molding @ Material Epoxy resin Semiconductor Company, Matsushita Electric Industrial Co., Ltd. Established: 2004-01-19 Revised > 2007-02-13PACKAGE STANDARDS SSOP010-P-0225A Total Pages Page 6 4 3. Mark Drawing Product Name Date Code Semiconductor Company, Matsushita Electric Industrial Co., Ltd. Established: 2004-01-19 Revised > 2007-02-13PACKAGE STANDARDS SSOP010-P-0225A Total Pages Page 6 5 4. Power Dissipation (Technical Report) 0.500 Mount On PWB[Glass-Epoxy:50X50X0.8t(mm)] Rth(-a)=259.0C/W 0.400 | 0.386 = 0.300 0.287 ce S w 2 77) 2 Qa 0.200 > FS Without PWB o, Rth(j-a)=348.0C/W 0.100 0.000 0 25 50 75 100 125 Ambient Temperature(C ) Semiconductor Company, Matsushita Electric Industrial Co., Ltd. Established: 2004-01-19 Revised > 2007-02-13PACKAGE STANDARDS Total Pages Page 6 6 SSOP010-P-0225A 5. Power Dissipation (Supplementary Explanation) [Experiment environment] Power Dissipation (Technical Report) is a result in the experiment environment of SEMI standard conformity. (Ambient air temperature (Ta) is 25 degrees C) [Supplementary information of PWB to be used for measurement] The supplement of PWB information for Power Dissipation data (Technical Report) are shown below. Indication Total Layer Resin Material Glass-Epoxy 1-layer FR-4 4-layer 4-layer FR-4 [Notes about Power Dissipation (Thermal Resistance) ] Power Dissipation values (Thermal Resistance) depend on the conditions of the surroundings, such as specification of PWB and a mounting condition , and a ambient temperature. (Power Dissipation (Thermal Resistance) is not a fixed value.) The Power Dissipation value (Technical Report) is the experiment result in specific conditions (evaluation environment of SEMI standard conformity) ,and keep in mind that Power Dissipation values (Thermal resistance) depend on circumference conditions and also change. [Definition of each temperature and thermal resistance] Ta = Ambient air temperature