

7516 Central Industrial Drive Riviera Beach, Florida 33404

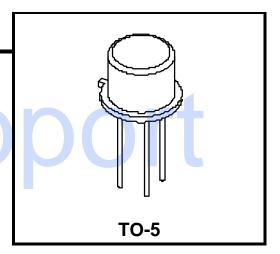
PHONE: (561) 842-0305 FAX: (561) 845-7813

2N3720

APPLICATIONS:

- High-Speed Switching
- Medium-Current Switching
- High-Frequency Amplifiers

FEATURES:


- Collector-Emitter Sustaining Voltage:
 V_{CEO(SUS)} = 60 Vdc (Min) 2N3720
- DC Current Gain:
 h_{FE} = 25-180 @ I_C = 1.0 Adc
- Low Collector-Emitter Saturation Voltage:
 V_{CE(sat)} = 0.75 Vdc @ I_C = 1.0 Adc
- High Current-Gain Bandwidth Product: f_T = 90 MHz (Typ)

Silicon PNP Power Transistors

DESCRIPTION:

These power transistors are produced by PPC's DOUBLE DIFFUSED PLANAR process. This technology produces high voltage devices with excellent switching speeds, frequency response, gain linearity, saturation voltages, high current gain, and safe operating areas. They are intended for use in Commercial, Industrial, and Military power switching, amplifier, and regulator applications.

Ultrasonically bonded leads and controlled die mount techniques are utilized to further increase the SOA capability and inherent reliability of these devices. The temperature range to 200°C permits reliable operation in high ambients, and the hermetically sealed package insures maximum reliability and long life.

ABSOLUTE MAXIMUM RATINGS:

SYMBOL	CHARACTERISTIC	VALUE	UNITS
V _{CEO} *	Collector-Emitter Voltage	60	Vdc
V _{CB} *	Collector-Base Voltage	60	Vdc
V _{EB} *	Emitter-Base Voltage	4.0	Vdc
lc*	Peak Collector Current	10	Adc
lc*	Continuous Collector Current	3.0	Adc
l _B *	Base Current	0.5	Adc
T _{STG} *	Storage Temperature	-65 to 200	∘C
T _J *	Operating Junction Temperature	-65 to 200	∘C
P _D *	Total Device Dissipation	6.0	Watts
	T _C = 25°C		
	Derate above 25°C	34.3	mW/∘C
P _D *	Total Device Dissipation	1.0	Watts
	T _A = 25°C		
	Derate above 25°C	5.71	mW/∘C
θ JC	Thermal Resistance		
	Junction to Case	29	°C/W
	Junction to Ambient	175	°C/W

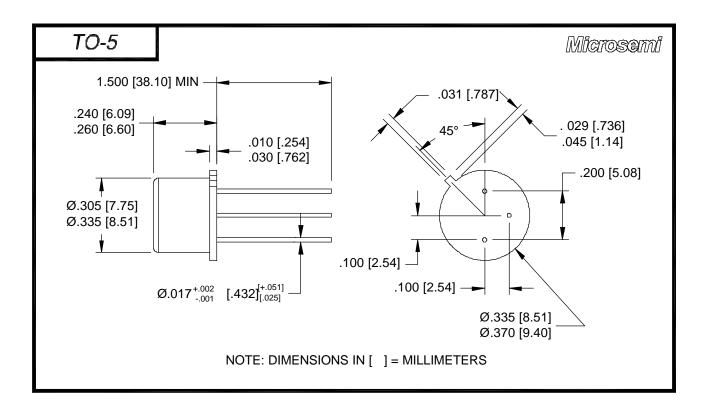
^{*} Indicates JEDEC registered Data.

ELECTRICAL CHARACTERISTICS:

(25°Case Temperature Unless Otherwise Noted)

SYMBOL	CHARACTERISTIC	TEST CONDITIONS	VALUE		Units
		TEST CONDITIONS		Max.	
V _{CEO(sus)*}	Collector-Emitter Sustaining Voltage	$I_C = 20 \text{ mAdc}, I_B = 0 \text{ (Note 1)}$	60		Vdc
ICEX*	Collector Cutoff Current	V _{CE} = 60 Vdc, V _{BE(off)} = 2.0 Vdc		10	μ Adc
		V _{CE} = 60 Vdc, V _{BE(off)} = 2.0 Vdc, T _C = 150°C		1.0	m Adc
ICBO*	Collector Cutoff Current	$V_{CB} = 60 \text{ Vdc}, I_E = 0$		10	μ Adc
I _{EBO} *	Emitter Cutoff Current	V _{BE} = 4.0 Vdc, I _C = 0		1.0	m Adc
hFE*	DC Current Gain (Note 1)	I _C = 500 mAdc, V _{CE} = 1.5 Vdc	20		
		I _C = 1.0 Adc, V _{CE} = 1.5 Vdc	25	180	
		$I_C = 1.0 \text{ Adc}, V_{CE} = 1.5 \text{ Vdc}, T_C = -40^{\circ}\text{C}$	15		
V _{CE(sat)} *	Collector-Emitter Saturation Voltage (Note 1)	I _C = 1.0 Adc, I _B = 100 mAdc, T _C = -40°C to + 100°C		0.75	Vdc
		I _C = 3.0 Adc, I _B = 300 mAdc, T _C = -40°C to +100°C		1.5	Vdc
V _{BE(sat)} *	Base-Emitter Saturation Voltage (Note 1)	I _C = 1.0 Adc, I _B = 100 mAdc, T _C = -40°C to + 100°C		1.5	Vdc
		$I_C = 3.0 \text{ Adc}, I_B = 300 \text{ mAdc}, T_C = -40^{\circ}\text{C to} + 100^{\circ}\text{C}$		2.3	Vdc
f _T *	Current-Gain Bandwidth Product (Note 2)	IC = 500 mAdc, VCE = 10 Vdc, f _{test} = 30 MHz	60		MHz
Cob*	Output Capacitance	V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz		120	pF
C _{ib} *	Input Capacitance	V _{EB} = 0.5 Vdc, I _C = 0, f = 0.1 MHz		1000	pF
ton*	Turn-on Time	V _{CC} = 12 Vdc, V _{BE(off)} = 0, I _C = 1.0 Adc, I _{B1} = 0.1 Adc		100	ns
t _{off} *	Turn-off Time	V _{CC} = 12 Vdc, I _C = 1.0 Adc, I _{B1} = I _{B2} = 100 mAdc		400	ns

Note 1: Pulse Test: Pulse width $\leq 300 \mu S$, Duty Cycle = 2.0%.


Note 2: $f_T = |h_{fe}|^* f_{test}$

^{*} Indicates JEDEC registered data

PACKAGE MECHANICAL DATA:

