5-544
FAST AND LS TTL DATA
DUAL DECADE COUNTER;
DUAL 4-STAGE
BINARY COUNTER
The SN54/74LS390 and SN54/74LS393 each contain a pair of high-speed
4-stage ripple counters. Each half of the LS390 is partitioned into a
divide-by-two section and a divide-by five section, with a separate clock input
for each section. The two sections can be connected to count in the 8.4.2.1
BCD code or they can count in a biquinary sequence to provide a square wave
(50% duty cycle) at the final output.
Each half of the LS393 operates as a Modulo-16 binary divider, with the last
three stages triggered in a ripple fashion. In both the LS390 and the LS393,
the flip-flops are triggered by a HIGH-to-LOW transition of their CP inputs.
Each half of each circuit type has a Master Reset input which responds to a
HIGH signal by forcing all four outputs to the LOW state.
Dual Versions of LS290 and LS293
LS390 has Separate Clocks Allowing ÷2, ÷2.5, ÷5
Individual Asynchronous Clear for Each Counter
Typical Max Count Frequency of 50 MHz
Input Clamp Diodes Minimize High Speed Termination Effects
CONNECTION DIAGRAM DIP (TOP VIEW)
SN54/74LS390
SN54/74LS393
NOTE:
The Flatpak version
has the same pinouts
(Connection Diagram) as
the Dual In-Line Package.
14 13 12 11 10 9
123456
8
7
VCC CP MR Q0Q1Q2Q3
CP MR Q0Q1Q2Q3GND
14 13 12 11 10 9
1 2 3 4 5 6 7
16 15
8
VCC
CP0
CP0MR Q0CP1Q2
Q1Q3
MR Q0CP1Q1Q2Q3GND
SN54/74LS390
SN54/74LS393
LOW POWER SCHOTTKY
ORDERING INFORMATION
SN54LSXXXJ Ceramic
SN74LSXXXN Plastic
SN74LSXXXD SOIC
J SUFFIX
CERAMIC
CASE 620-09
N SUFFIX
PLASTIC
CASE 648-08
16 1
16
1
16 1
D SUFFIX
SOIC
CASE 751B-03
DUAL DECADE COUNTER;
DUAL 4-STAGE
BINARY COUNTER
J SUFFIX
CERAMIC
CASE 632-08
N SUFFIX
PLASTIC
CASE 646-06
14 1
14
1
14 1
D SUFFIX
SOIC
CASE 751A-02
5-545
FAST AND LS TTL DATA
SN54/74LS390 SN54/74LS393
PIN NAMES LOADING (Note a)
HIGH LOW
CP Clock (Active LOW going edge)
Input to +16 (LS393) 0.5 U.L. 1.0 U.L.
CP0Clock (Active LOW going edge)
Input to ÷2 (LS390) 0.5 U.L. 1.0 U.L.
CP1Clock (Active LOW going edge)
Input to ÷5 (LS390) 0.5 U.L. 1.5 U.L.
MR Master Reset (Active HIGH) Input 0.5 U.L. 0.25 U.L.
Q0Q3Flip-Flop outputs (Note b) 10 U.L. 5 (2.5) U.L.
NOTES:
a) 1 TTL Unit Load (U.L.) = 40 µA HIGH/1.6 mA LOW.
b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74)
b) Temperature Ranges.
FUNCTIONAL DESCRIPTION
Each half of the SN54/74LS393 operates in the Modulo 16
binary sequence, as indicated in the ÷16 Truth T able. The first
flip-flop is triggered by HIGH-to-LOW transitions of the CP
input signal. Each of the other flip-flops is triggered by a
HIGH-to-LOW transition of the Q output of the preceding
flip-flop. Thus state changes of the Q outputs do not occur
simultaneously. This means that logic signals derived from
combinations of these outputs will be subject to decoding
spikes and, therefore, should not be used as clocks for other
counters, registers or flip-flops. A HIGH signal on MR forces
all outputs to the LOW state and prevents counting.
Each half of the LS390 contains a ÷5 section that is
independent except for the common MR function. The ÷5
section operates in 4.2.1 binary sequence, as shown in the ÷5
Truth Table, with the third stage output exhibiting a 20% duty
cycle when the input frequency is constant. To obtain a ÷10
function having a 50% duty cycle output, connect the input
signal to CP1 and connect the Q3 output to the CP0 input; the
Q0 output provides the desired 50% duty cycle output. If the
input frequency is connected to CP0 and the Q0 output is
connected to CP1, a decade divider operating in the 8.4.2.1
BCD code is obtained, as shown in the BCD Truth T able. Since
the flip-flops change state asynchronously, logic signals
derived from combinations of LS390 outputs are also subject
to decoding spikes. A HIGH signal on MR forces all outputs
LOW and prevents counting.
SN54/74LS390 LOGIC DIAGRAM (one half shown)
SN54/74LS393 LOGIC DIAGRAM (one half shown)
CP1
CP0
MR
MR
CP
K CP J
CDQ
K CP J
CDQ
K CP J
CDQ
K CP J
CDQ
K CP J
CDQ
K CP J
CDQ
K CP J
CDQ
K CP J
CDQ
Q0
Q0
Q1
Q1
Q2
Q2
Q3
Q3
5-546
FAST AND LS TTL DATA
SN54/74LS390 SN54/74LS393
SN54/74LS390 BCD
TRUTH TABLE
(Input on CP0; Q0 CP1)
SN54/74LS390 ÷5
TRUTH TABLE
(Input on CP1)
SN54/74LS393
TRUTH TABLE
COUNT OUTPUTS
Q3Q2Q1Q0
0
1
2
3
4
5
6
7
8
9
L
L
L
L
L
L
L
L
H
H
L
L
H
H
L
L
H
H
L
L
L
H
L
H
L
H
L
H
L
H
L
L
L
L
H
H
H
H
L
L
COUNT OUTPUTS
Q3Q2Q1
0
1
2
3
4
L
L
L
L
H
L
H
L
H
L
L
L
H
H
L
COUNT OUTPUTS
Q3Q2Q1Q0
0
1
2
3
4
5
6
7
8
9
10
11
L
L
L
L
H
H
H
H
H
H
H
H
L
L
H
H
L
L
H
H
L
L
H
H
L
H
L
H
L
H
L
H
L
H
L
H
L
L
L
L
L
L
L
L
H
H
H
H
12
13
14
15
L
L
L
L
L
L
H
H
L
H
L
H
H
H
H
H
SN54/74LS390 ÷10 (50% @ Q0)
TRUTH TABLE
(Input on CP1, Q3 to CP0)
COUNT OUTPUTS
Q3Q2Q1Q0
0
1
2
3
4
5
6
7
8
9
L
L
L
L
H
L
L
L
L
H
L
H
L
H
L
L
H
L
H
L
L
L
L
L
L
H
H
H
H
H
L
L
H
H
L
L
L
H
H
L
H = HIGH Voltage Level
L = LOW Voltage Level
GUARANTEED OPERATING RANGES
Symbol Parameter Min Typ Max Unit
VCC Supply Voltage 54
74 4.5
4.75 5.0
5.0 5.5
5.25 V
TAOperating Ambient Temperature Range 54
74 55
025
25 125
70 °C
IOH Output Current — High 54, 74 0.4 mA
IOL Output Current — Low 54
74 4.0
8.0 mA
5-547
FAST AND LS TTL DATA
SN54/74LS390 SN54/74LS393
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)
Symbol
Parameter
Limits
Unit
Test Conditions
Symbol
Parameter
Min Typ Max
Unit
Test Conditions
VIH Input HIGH Voltage 2.0 V Guaranteed Input HIGH Voltage for
All Inputs
VIL
Input LOW Voltage
54 0.7
V
Guaranteed Input LOW Voltage for
All Inputs
VIL
Input LOW Voltage
74 0.8
V
Guaranteed Input LOW Voltage for
All Inputs
VIK Input Clamp Diode Voltage 0.65 1.5 V VCC = MIN, IIN = –18 mA
VOH
Output HIGH Voltage
54 2.5 3.5 V
V
CC = MIN, IOH = MAX, VIN = VIH
or VIL per Truth Table
VOH
Output HIGH Voltage
74 2.7 3.5 V
VCC = MIN, IOH = MAX, VIN = VIH
or VIL per Truth Table
VOL
Output LOW Voltage
54, 74 0.25 0.4 V IOL = 4.0 mA
VCC = VCC MIN,
VIN = VIL or VIH
per Truth Table
VOL
Output LOW Voltage
74 0.35 0.5 V IOL = 8.0 mA
VIN = VIL or VIH
per Truth Table
IIH
Input HIGH Current
20 µA VCC = MAX, VIN = 2.7 V
IIH
Input HIGH Current
0.1 mA VCC = MAX, VIN = 7.0 V
IIL
Input LOW Current
MR 0.4 mA
VCC = MAX, VIN = 0.4 V
IIL Input LOW Current
CP, CP01.6 mA
VCC = MAX, VIN = 0.4 V
IL
CP12.4 mA
CC = MAX, VIN = 0.4 V
IOS Short Circuit Current (Note 1) 20 100 mA VCC = MAX
ICC Power Supply Current 26 mA VCC = MAX
Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS (TA = 25°C, VCC = 5.0 V)
Symbol
Parameter
Limits
Unit
Test Conditions
Symbol
Parameter
Min Typ Max
Unit
Test Conditions
fMAX Maximum Clock Frequency
CP0 to Q025 35 MHz
CL = 15 pF
fMAX Maximum Clock Frequency
CP1 to Q120 MHz
CL = 15 pF
tPLH
tPHL Propagation Delay,
CP to Q0LS393 12
13 20
20 ns
CL = 15 pF
tPLH
tPHL CP0 to Q0LS390 12
13 20
20 ns
CL = 15 pF
tPLH
tPHL CP to Q3LS393 40
40 60
60 ns
C
L = 15 pF
tPLH
tPHL CP0 to Q2LS390 37
39 60
60 ns
CL = 15 pF
tPLH
tPHL CP1 to Q1LS390 13
14 21
21 ns
tPLH
tPHL CP1 to Q2LS390 24
26 39
39 ns
tPLH
tPHL CP1 to Q3LS390 13
14 21
21 ns
tPHL MR to Any Output LS390/393 24 39 ns
5-548
FAST AND LS TTL DATA
SN54/74LS390 SN54/74LS393
AC SETUP REQUIREMENTS (TA = 25°C, VCC = 5.0 V)
Parameter
Limits
Unit
Test Conditions
Parameter
Min Typ Max
Unit
Test Conditions
tWClock Pulse Width LS393 20 ns
VCC = 5.0 V
tWCP0 Pulse Width LS390 20 ns
VCC = 5.0 V
tWCP1 Pulse Width LS390 40 ns
VCC = 5.0 V
tWMR Pulse Width LS390/393 20 ns
CC = 5.0 V
trec Recovery Time LS390/393 25 ns
AC WAVEFORMS
*The number of Clock Pulses required between tPHL and tPLH measurements can be determined from the appropriate Truth Table.

 





 


Figure 1
Figure 2
5-549
FAST AND LS TTL DATA
  
 








°
(









°
(









°
(









°
(


 !  !
"!
!  "   !
& 
"  ! " 
!   " # 
 " #!
%#   " #!  
 !
) ! !" $ !" 
)
18
916
-A-
-B- P
 
D
-T-
K
C
G
M
R X 45°
FJ



Case 751B-03 D Suffix
16-Pin Plastic
SO-16
 
"
 
! !
Case 648-08 N Suffix
16-Pin Plastic
  
 









°










°









°










°

"!
!  "   !
& 
"  ! 
! ' " "  ! $
   
! ' ! " # 
!
#   ! "
) " # ) !" $ !" 
)
 !
 !  !
 !
-A-
B
1 8
916
F
HGD
 
SC
-T-


KJM
L
"  
Case 620-09 J Suffix
16-Pin Ceramic Dual In-Line
  
 



*



*
°









°



*



*
°









°

 !
 !
 !
 !
 !
 !
"!
!  "   !
& 
"  ! 
! " "   $
   
 &  $ "   $ 
"  " ! "   &
) " # ) !" $ !" 
)
-B-
-A-
 
-T-
C
D
E
F G J
K
M
N


 
L
16 9
1 8
  "
!
  "
!
5-550
FAST AND LS TTL DATA
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability , including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “T ypicals” must be validated for each customer application by customers technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body , or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer .
Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.