Standard Power MOSFETs IRF220, IRF221, IRF222, IRF223 Fite Number 1567 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 4.0A and 5.0A, 150V-200V ros(on) = 0.8 Q and 1.29 Features: @ SOA is power-dissipation limited @ Nanosecond switching speeds @ Linear transfer characteristics @ High input impedance Majority carrier device The IRF220, IRF221, IRF222 and IRF223 are n-channel enhancement-mode silicon-gate power field- effect transistors designed for applications such as switch~- ing regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching tran- sistors requiring high speed and iow gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AA steel N-CHANNEL ENHANCEMENT MODE D 6 | Ss 9$2CS-33741 TERMINAL DIAGRAM TERMINAL DESIGNATION DRAIN SOURCE (FLANGE) ~ OF 6 . A package GATE 92Cs-37801 JEDEC TO-204AA Absolute Maximum Ratings Parameter IRF220 IRF221 (RF222 IRF223 Units Vos. Drain - Source Voltage @ 200 150 200 150 v Vocr Drain - Gate Voltage (Rag = 20k) 200 150 200 150 v Ip @Tc = 25C Continuous Orain Current 5.0 5.0 4.0 4.0 A Ip @ Te = 100C Continuous Drain Current 3.0 3.0 2.5 2.6 A lom Pulsed Drain Current @) 20 20 16 16 A Ves. Gate - Source Vottage +20 v Pp @Tc = 25C Max. Power Dissipation 40 (See Fig. 14) w Linear Derating Factor 0.32 (See Fig. 14) wee LM Inductive Current, Clamped (See Fig. 15 and 16} = 100gH J A 20 Jt 20 l 16 L 16 Ty Operating Junction and _ 150 c Tstg Storage Temperature Range 50to Lead Temperature 300 (0.063 in. {1.6mm from case for 10s} c 3-74Standard Power MOSFETs IRF220, IRF221, IRF222, IRF223 Electrical Characteristics @T = 25C (Uniess Otherwise Specified) Parameter Type Min. Typ. | Max. Units Test Conditions BVpss _Orain - Source Breakdown Voltage IRF220 200 _ _ v Ves = OV IRF222 IRF221 = ine223 | 180 | - v Ip = 250pA Vsti) Gate Threshold Voltage ALL 20 | | 40 Vv Vos = Ves. 'p = 25044 \Gss ___ Gate-Source Leakage Forward ALL = = 100 nA Vegg = 20V igsg _ Gate-Source Leakage Reverse ALL - |-100 nA Vos = -20V loss Zero Gate Voltage Drain Current ALL = = 250 BA Vps = Max. Rating, Vgg = OV = ~ [1000] 4A Vps = Max. Rating x 0.8, Vgg = OV. Tc = 125C IDton) On State Drain Current iRF220 0 5.0 - - A IRF 221 Vos?! xR, v y0v 0S ? 'Dion) * "OS(on) max.: YGS * 1RF222 | 4g | _ _ A IRF223 Rpsioni Static Drain-Sourcen-State wRF220 | Resistance IRF221 O5 | 08 a Vg = 10V. Ip = 2.5A iRF222 _ 08 12 Q IRF223 . . Sts Forward Transconductance @) ALL 1.3 | 2.5 - S$ (Dd) Vos? 'pion * Fasion) max. 'p = 2-54 Ciss Input Capacitance ALL = 450 _ pF Vag = OV. Vpg = 25V.f = 1.0MHz Coss Output G ALL =__| 150 pF See Fig. 10 Criss Reverse Transfer Capacitance ALL - 40 7 pF tdjon) __ Turn-On Delay Time ALL - 20 | 40 ns Vop = 0-5BVpgg. Ip = 2.54.2, = 50f ty Rise Time ALL > 30 60 ns See Fig. 17 tg(off, _Turn-Off Delay Time ALL 7 50 100 ns (MOSFET switching times are essentially tf Fall Time "ALL _ 30 60 ns independent of operating temperature.) Qa. Totai Gate Charge v, = 10V, Ip = 6.0A. Voc = 0.8 Max, Rating. 9 ALL Ww 15 Cc GS D DS (Gate- Source Pius Gate-Drain) " See Fig. 18 for test circuit. (Gate charge is essentially Qgs Gate-Source Charge ALL _ 5.0 75 ne independent of operating temperature.) Qga Gate-Drain ('Miller} Charge ALL - 6.0 9.0 ac Lo Internal Drain Inductance ALL _ 5.0 - nH Measured between Modified MOSFET the contact screw on symbol showing the header that is closer to internal device source and gate pins inductances. and center of die, Bo ls Internal Source inductance ALL - [128] - nH Measured from the to source pin, 6 mm {0.25 in.) from header G wl Ls and source bonding pad. Ss Thermal Resistance RinyG _ Junction-to-Case ALL - [3.12 [ ecw Fincs _Case-to-Sink ALL = 0.1 = C/W Mounting surface flat, smooth, and greased. Ringe Junction-to-Ambient ALL - = 30 ecew Free Air Operation Source-Drain Diode Ratings and Characteristics Is, Continuous Source Current (RF220 _ 5.0 A Maditied MOSFET symbol (Body Diode) IRE221 . showing the integral D IRF 222 reverse P-N junction rectifier, wnr223 | | ~ | 7] A Ism Pulse Source Current tRF220 _ _ 20 A 6 {Body Diode) @) IRF221 IRF222 s inr223 | ~ | ~ | 8 A Vsp _ Diode Forward Voltage @ IRF220 _ _ = iRF221 | ~ | 20 Vv To = 25C, Ig = 5.0A, Veg = OV 1RF222 ~ 35 _ ~ IRF223 = 1.8 v Te 25C, Ig = 4.0A, Ves = ov ter Reverse Recovery Time ALL - 360 - ns Ty = 150C, Ip = 5.0A, dig/dt = 100A/ys Qar _ Reverse Recovered Charge ALL ~ 2.3 = 2e Ty = 150C, Ip = 5.0A, dip/dt = 100A/us ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp. @Ty = 25C to 150C. @Pulse Test: Pulse width < 300s, Duty Cycle < 2%. @ Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5}. 3-75Standard Power MOSFETs IRF220, IRF221, IRF222, IRF223 10 10 TT y T 1 : J save Purse test 4. + i + | 4 i _Vos> Invent Poston max, 1 = i : ] a ia BR he pa - x : [ 6 2 ghee eee te bh 5 { z= . 1 a re 5 i 4 Safe boop z ' & S ty asec} { | ? af ty ath + i ty ny | 0 20 40 6u BU 100 6 2 Vps, ORAIN TO SOURCE VOLTAGE (VOLTS} Vgs. GATE T0 Sounce VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics GPERATION IN THIS AREA IS LIMITED BY Roston} a PULSE TEST = & = = 5 5 & = = > 3 =z = = a =) Te = 25C = 180C MAX. Rinuc = 3.12C/W. SINGLE 3 2 0 2 4 6 8 10 102 5 10 20 $0 100 200 $00 Vos. DRAIN TO-SQUACE VOLTAGE IVOLTS) Vos. DRAIN TO-SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Area > nn wn o o n _ YW 1. OUTY FACTOR, O= 2 2 a PULSE (TRANSIENT 2. PER UNIT BASE = Ringe = 3.12 OEG. CW. 3. Ty - Te = Pom 2rnuclt). 9.02 oor 5 2 6 ys 2 5 432 5 w2 2 5 wl 2 5 1002 5 10 ty, SQUARE WAVE PULSE DURATION (SECONDS) Zynaclt Myysc. NORMALIZED EFFECTIVE TRANSIENT THERMAL IMPEDANCE (PER UNIT) Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 3-76Ots, TRANSCONDUCTANCE (SIEMENS) Vos > !p(on) * Ros(on) max. 80 ps PULSE TEST 0 2 4 6 8 10 Ig, DRAIN CURRENT (AMPERES) Fig. 6 Typical Transconductance Vs. Drain Current BV pg. DRAIN TO SOURCE BREAKDOWN VOLTAGE (NORMALIZED) -40 o 40 80 120 160 Ty, JUNCTION TEMPERATURE (OC) Fig. 8 Breakdown Voltage Vs. Temperature 1000 Vas 70 t= 1 MHz 1 1 800 Cigs = Cys + Cyg, Cas SHORTED Cras = Cga Cyc Foy Coss = Cas + Tet Cod 600 = Coyt Cod wl Ciss 400 C, CAPACITANCE (pf) 200 Crs 0 10 20 30 40 50 Vos. DRAIN-TO-SOURCE VOLTAGE (VOLTS} Fig. 10 Typicat Capacitance Vs. Drain-to-Source Voltage Standard Power MOSFETs IRF220, IRF221, IRF222, IRF223 g, me on Ty = 180C 6 ~ on Ing, REVERSE DRAIN CURRENT (AMPERES) 4 ny Ty = 260 o 1 2 3 4 Vgp, SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7 Typical Source-Drain Diode Forward Voltage S N-TO-SOURCE ON RESISTANCE o (NORMALIZED) 0.6 Aips(en). DRA! a2 40 o 40 80 420 Ty, JUNCTION TEMPERATURE (C) Fig. 9 Normalized On-Resistance Vs. Temperature Vps = 40V a | Vpg = 180V, 1RF220, o Vgg. GATE-TG-SOURCE VOLTAGE (VOLTS) 3 ip = 8A FOR TEST CIRCUIT FIGURE a 4 8 12 16 20 Qg, TOTAL GATE CHARGE (nC) Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 3-77