9
®
INA121
INA121
1MΩ1MΩ
INA121
10kΩ
Thermocouple
INA121
Center-tap provides
bias current return.
INA121
Bridge resistance provides
bias current return.
Crystal or
Ceramic
Transducer
BridgeV
REF
The INA121 provides excellent rejection of high frequency
common-mode signals. The typical performance curve,
“Common-Mode Rejection vs Frequency” shows this be-
havior. If the inputs are not properly balanced, however,
common-mode signals can be converted to differential sig-
nals. Run the VIN and VIN connections directly adjacent each
other, from the source signal all the way to the input pins. If
possible use a ground plane under both input traces. Avoid
running other potentially noisy lines near the inputs.
NOISE AND ACCURACY PERFORMANCE
The INA121’s FET input circuitry provides low input bias
current and high speed. It achieves lower noise and higher
accuracy with high impedance sources. With source imped-
ances of 2kΩ to 50kΩ the INA114, INA128, or INA129 may
provide lower offset voltage and drift. For very low source
impedance (≤1kΩ), the INA103 may provide improved
accuracy and lower noise. At very high source impedances
(> 1MΩ) the INA116 is recommended.
OFFSET TRIMMING
The INA121 is laser trimmed for low offset voltage and
drift. Most applications require no external offset adjust-
ment. Figure 2 shows an optional circuit for trimming the
output offset voltage. The voltage applied to Ref terminal is
summed at the output. The op amp buffer provides low
impedance at the Ref terminal to preserve good common-
mode rejection. Trim circuits with higher source impedance
should be buffered with an op amp follower circuit to assure
low impedance on the Ref pin.
Input circuitry must provide a path for this input bias current
if the INA121 is to operate properly. Figure 3 shows various
provisions for an input bias current path. Without a bias
current return path, the inputs will float to a potential which
exceeds the common-mode range of the INA121 and the
input amplifiers will saturate.
If the differential source resistance is low, the bias current
return path can be connected to one input (see the thermo-
couple example in Figure 3). With higher source impedance,
using two resistors provides a balanced input with possible
advantages of lower input offset voltage due to bias current
and better high-frequency common-mode rejection.
+–
INPUT BIAS CURRENT RETURN PATH
The input impedance of the INA121 is extremely high—
approximately 1012Ω. However, a path must be provided for
the input bias current of both inputs. This input bias current
is typically 4pA. High input impedance means that this input
bias current changes very little with varying input voltage.
INA121
V
IN
V
IN
R
G
–
+
10kΩ
(1)
V
O
OPA277
Ref
±10mV
Adjustment Range
100Ω
(1)
100Ω
(1)
100µA
1/2 REF200
100µA
1/2 REF200
V+
V–
NOTE: (1) For wider trim range required
in high gains, scale resistor values larger
INPUT COMMON-MODE RANGE
The linear input voltage range of the input circuitry of the
INA121 is from approximately 1.2V below the positive
supply voltage to 2.1V above the negative supply. A differ-
ential input voltage causes the output voltage to increase.
The linear input range, however, will be limited by the
output voltage swing of amplifiers A1 and A2. So the linear
common-mode input range is related to the output voltage of
the complete amplifier. This behavior also depends on sup-
ply voltage—see typical performance curve “Input Com-
mon-Mode Range vs Output Voltage”.
FIGURE 3. Providing an Input Common-Mode Current Path.
FIGURE 2. Optional Trimming of Output Offset Voltage.