Description
The HCPL-0370/3700 and HCPL-3760 are voltage/cur-
rent threshold detection optocouplers. The HCPL-3760 is
a low-current version of the HCPL-0370/3700. To obtain
lower current operation, the HCPL-3760 uses a high-effi-
ciency AlGaAs LED which provides higher light output at
lower drive currents. The devices utilize threshold sens-
ing input buffer ICs which permit control of threshold
levels over a wide range of input voltages with a single
external resistor.
The input buffer incorporates several features: hysteresis
for extra noise immunity and switching immunity, a di-
ode bridge for easy use with ac input signals, and inter-
nal clamping diodes to protect the buffer and LED from
a wide range of over-voltage and over-current transients.
Because threshold sensing is done prior to driving the
LED, variations in optical coupling from the LED to the
detector will have no effect on the threshold levels.
Functional Diagram
HCPL-0370, HCPL-3700, HCPL-3760
Isolated Voltage/Current Detectors
Data Sheet
Features
Standard (HCPL-0370/3700) and low input current
(HCPL-3760) versions
AC or DC input
Programmable sense voltage
Hysteresis
Logic compatible output
Thresholds guaranteed over temperature
Thresholds independent of LED optical parameters
Recognized under UL 1577 and CSA approved for
dielectric withstand proof test voltage of 3750 Vac, 1
minute
Applications
Limit switch sensing
Low voltage detector
AC mains and DC link voltage detection
Relay contact monitor
Relay coil voltage monitor
Current sensing
Microprocessor interfacing
Lead (Pb) Free
RoHS 6 fully
compliant
RoHS 6 fully compliant options available;
-xxxE denotes a lead-free product
CAUTION: It is advised that normal static precautions be taken in handling and assembly
of this component to prevent damage and/or degradation which may be induced by ESD.
1
2
3
4
8
7
6
5
HCPL-3700 Functional Diagram
AC
DC+
DC-
AC
VCC
VO
GND
TRUTH TABLE
(POSITIVE LOGIC)
INPUT
H
L
OUTPUT
L
H
NC
2
The HCPL-0370/3700’s input buffer IC has a nominal turn on threshold of 2.5 mA (ITH +) and 3.7 volts (VTH +).
The buffer IC for the HCPL-3760 was redesigned to permit a lower input current. The nominal turn on threshold for the
HCPL-3760 is 1.2 mA (ITH +) and 3.7 volts (VTH +).
The high gain output stage features an open collector output providing both TTL compatible saturation voltages and
CMOS compatible break down voltages.
By combining several unique functions in a single package, the user is provided with an ideal component for indus-
trial control computer input boards and other applications where a pre deter mined input threshold level is desirable.
To order, choose a part number from the part number column and combine with the desired option from the option
column to form an order entry.
Example 1: HCPL-3760-500E to order product of Gull Wing Surface Mount package in Tape and Reel packaging with
and RoHS compliant.
Example 2: HCPL-3700 to order product of 300 mil DIP package in Tube packaging and non RoHS compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.
Remarks: The notation ‘#XXX’ is used for existing products, while (new) products launched since July 15, 2001 and
RoHS compliant will use ‘–XXXE.
Ordering Information
HCPL-0370/HCPL-3700/HCPL-3760 is UL Recognized with 3750 Vrms for 1 minute per UL1577 unless otherwise
specified.
Part
number
Option
Package
Surface
Mount
Gull
Wing
Tape
& Reel
UL 5000
Vrms/1
Minute
IEC/EN/DIN
EN 60747-5-5 Quantity
RoHS
Compliant
Non-RoHS
Compliant
HCPL-
0370
-000E No option SO-8 X 100 per tube
-500E -500 X X 1500 per reel
-060E NA X X 100 per tube
-560E NA X X X 1500 per reel
HCPL-
3700
-000E No option 300 mil
DIP-8
50 per tube
-300E #300 X X 50 per tube
-500E #500 X X X 1000 per reel
-020E -020 X 50 per tube
-320E -320 X X X 50 per tube
-520E -520 X X X X 1000 per reel
-060E NA X 50 per tube
-360E NA X X X 50 per tube
-560E NA X X X X 1000 per reel
HCPL-
3760
-000E No option 300 mil
DIP-8
50 per tube
-300E #300 X X 50 per tube
-500E #500 X X X 1000 per reel
-060E NA X 50 per tube
-360E NA X X X 50 per tube
-560E NA X X X X 1000 per reel
Note:
NA = Not available.
3
Package Outline Drawings
Standard DIP Package (HCPL-3700/3760)
9.40 (0.370)
9.90 (0.390)
1.78 (0.070) MAX.
1.19 (0.047) MAX.
A XXXX
YYWW
DATE CODE
0.76 (0.030)
1.40 (0.056) 2.28 (0.090)
2.80 (0.110)
0.51 (0.020) MIN.
0.65 (0.025) MAX.
4.70 (0.185) MAX.
2.92 (0.115) MIN.
DIMENSIONS IN MILLIMETERS AND (INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
5678
4321
0.20 (0.008)
0.33 (0.013)
6.10 (0.240)
6.60 (0.260)
5° TYP.
7.36 (0.290)
7.88 (0.310)
1
2
3
4
8
7
6
5
AC
AC
DC+
DC-
GND
VCC
NC
VO
PIN ONE
TYPE NUMBER
UL
RECOGNITION
UR
3.56 ± 0.13
(0.140 ± 0.005)
Schematic
4
Package Outline Drawings, continued
Gull Wing Surface Mount Option 300 (HCPL-3700/3760)
XXX
YWW
8765
4321
5.994 ± 0.203
(0.236 ± 0.008)
3.937 ± 0.127
(0.155 ± 0.005)
0.406 ± 0.076
(0.016 ± 0.003) 1.270
(0.050)BSC
5.080 ± 0.127
(0.200 ± 0.005)
3.175 ± 0.127
(0.125 ± 0.005) 1.524
(0.060)
45° X 0.432
(0.017)
0.228 ± 0.025
(0.009 ± 0.001)
TYPE NUMBER
(LAST 3 DIGITS)
DATE CODE
0.305
(0.012)MIN.
TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH)
5.207 ± 0.254 (0.205 ± 0.010)
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.
NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.
0.203 ± 0.102
(0.008 ± 0.004)
PIN ONE
0 ~ 7°
*
*
7.49 (0.295)
1.9 (0.075)
0.64 (0.025)
LAND PATTERN RECOMMENDATION
0.635 ± 0.25
(0.025 ± 0.010)
12° NOM.
0.20 (0.008)
0.33 (0.013)
9.65 ± 0.25
(0.380 ± 0.010)
0.635 ± 0.130
(0.025 ± 0.005)
7.62 ± 0.25
(0.300 ± 0.010)
5
6
7
8
4
3
2
1
9.65 ± 0.25
(0.380 ± 0.010)
6.350 ± 0.25
(0.250 ± 0.010)
1.080 ± 0.320
(0.043 ± 0.013)
1.780
(0.070)
MAX.
1.19
(0.047)
MAX.
2.540
(0.100)
BSC
DIMENSIONS IN MILLIMETERS (INCHES).
TOLERANCES (UNLESS OTHERWISE SPECIFIED):
LEAD COPLANARITY
MAXIMUM: 0.102 (0.004)
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
xx.xx = 0.01
xx.xxx = 0.005
A XXXX
YYWW
DATE CODE
TYPE NUMBER
UL
RECOGNITION
UR
MOLDED
1.016 (0.040)
1.27 (0.050)
10.9 (0.430)
2.0 (0.080)
LAND PATTERN RECOMMENDATION
3.56 ± 0.13
(0.140 ± 0.005)
Small Outline SO-8 Package (HCPL-0370)
5
Regulatory Information
The HCPL-0370/3700/3760 has been approved by the following organizations:
Solder Reflow Thermal Profile
Recommended Pb-Free IR Profile
Note: Non-halide flux should be used.
Note: Non-halide flux should be used.
217 °C
RAMP-DOWN
6 °C/SEC. MAX.
RAMP-UP
3 °C/SEC. MAX.
150 - 200 °C
260 +0/-5 °C
t 25 °C to PEAK
60 to 150 SEC.
15 SEC.
TIME WITHIN 5 °C of ACTUAL
PEAK TEMPERATURE
tp
ts
PREHEAT
60 to 180 SEC.
tL
TL
Tsmax
Tsmin
25
Tp
TIME
TEMPERATURE
NOTES:
THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.
Tsmax = 200 °C, Tsmin = 150 °C
IEC/EN/DIN EN 60747-5-5 (with option 060)
Maximum Working Insulation Voltage VIORM = 567 Vpeak
for HCPL-0370, and 630 Vpeak for HCPL3700/3760.
Highest Allowable Overvoltage VIOTM = 6000 Vpeak for
HCPL-0370/3700/3760.
UL
Recognized under UL 1577, component recognition
program, File E55361 (HCPL-0370 pending).
CSA
Approved under CSA Component Acceptance Notice
#5, File CA 88324.
0
TIME (SECONDS)
TEMPERATURE (¡C)
200
100
50 150100 200 250
300
0
30
SEC.
50 SEC.
30
SEC.
160¡C
140¡C
150¡C
PEAK
TEMP.
245¡C
PEAK
TEMP.
240¡C
PEAK
TEMP.
230¡C
SOLDERING
TIME
200¡C
PREHEATING TIME
150¡C, 90 + 30 SEC.
2.5¡C ± 0.5¡C/SEC.
3¡C + 1¡C/Ð0.5¡C
TIGHT
TYPICAL
LOOSE
ROOM
TEMPERATURE
PREHEATING RATE 3¡C + 1¡C/Ð0.5¡C/SEC.
REFLOW HEATING RATE 2.5¡C ± 0.5¡C/SEC.
6
Insulation and Safety Related Specifications
Parameter Symbol
8-Pin DIP
(300 mil)
Value
SO-8
Value Units Conditions
Min.. External Air Gap
(External Clearance)
L(IO1) 7.1 4.9 mm Measured from input terminals to output
terminals, hortest distance through air
Min.. External Tracking
Path (External Creepage)
L(IO2) 7.4 4.8 mm Measured from input terminals to output
terminals, shortest distance path along body
Min.. Internal Plastic
Gap (Internal Clearance)
0.08 0.08 mm Through insulation distance, conductor to
conductor, usually the direct distance between
the photoemitter and photodetector inside the
optocoupler cavity
Tracking Resistance
(Comparative
Tracking Index)
CTI 200 200 V DIN IEC 112/VDE 0303 PART 1
Isolation Group IIIa Material Group (DIN VDE 0110, 1/89, Table 1)
IEC/EN/DIN EN 60747-5-5 Insulation Related Characteristics [1] (with option 060)
Description Symbol HCPL-0370 HCPL-3700/3760 Units
Installation classification per DIN VDE 0110/1.89, Table 1
for rated mains voltage ≤ 150 V rms
for rated mains voltage ≤ 300 V rms
for rated mains voltage ≤ 600 V rms
I-IV
I-IV
I-III
I-IV
I-IV
I-III
Climatic Classification 55/85/21 55/85/21
Pollution Degree (DIN VDE 0110/1.89) 2 2
Maximum Working Insulation Voltage VIORM 567 630 V peak
Input to Output Test Voltage, Method b
VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec
Partial Discharge < 5 pC
VPR 1063 1181 V peak
Input to Output Test Voltage, Method a
VIORM x 1.6 = VPR, Type and sample test, tm = 10 sec,
Partial Discharge < 5 pC
VPR 907 1008 V peak
Highest Allowable Overvoltage
(Transient Overvoltage, tini = 60 sec)
VIOTM 6000 6000 V peak
Safety Limiting Values
(Maximum values allowed in the event of a failure)
Case Temperature
Input Current [2]
Output Power [2]
TS
IS,INPUT
PS,OUTPUT
150
150
600
175
230
600
°C
mA
mW
Insulation Resistance at TS, VIO = 500 V RS109 109 W
Notes:
1. Insulation characteristics are guaranteed only within the safety maximum ratings, which must be ensured by protective circuits within the
application.
2. Safety-limiting parameters are dependent on case temperature. The Input Current, IS,INPUT, derates linearly above 25°C free-air case temperature
at a rate of 1.2 mA/°C and 1.53 mA/°C for HCPL-0370 and HCPL-3700/3760 respectively; the Output Power, PS,OUTPUT, derates linearly above 25°C
free-air case temperature at a rate of 4.8 mW/°C and 4 mW/°C for HCPL-0370 and HCPL-3700/3760 respectively.
7
Recommended Operating Conditions
Parameter Symbol Min. Max. Units Note
Supply Voltage VCC 2 18 V
Operating Temperature TA0 70 °C
Operating Frequency f 0 4 kHz 8
Absolute Maximum Ratings (No derating required up to 70°C)
Parameter Symbol Min. Max. Units Note
Storage Temperature TS -55 125 °C
Operating Temperature TA -40 85 °C
Lead Soldering Cycle Temperature 260 °C 1
Time 10 s
Input Current Average 50 2
Surge IIN 140 mA 2, 3
Transient 500
Input Voltage (Pins 2-3) VIN -0.5 V
Input Power Dissipation HCPL-3700/3760 PIN 230 mW 4
HCPL-0370 172
Total Package Power Dissipation HCPL-3700/3760 PT 305 mW 5
HCPL-0370 275
Output Power Dissipation HCPL-3700/3760 PO 210 mW 6
HCPL-0370 103
Output Current Average IO 30 mA 7
Supply Voltage (Pins 8-5) VCC -0.5 20 V
Output Voltage (Pins 6-5) VO -0.5 20 V
Solder Reflow Temperature Profile See Package Outline Drawings section
8
Electrical Specifications
Over Recommended Temperature TA = 0°C to 70°C, Unless Otherwise Specified.
Parameter Sym. Device Min. Typ.[9] Max. Units Conditions Fig. Note
Input
Threshold
Current
ITH+ HCPL-0370/3700 1.96 2.5 3.11 mA VIN = VTH+; VCC = 4.5 V;
VO = 0.4 V; IO 4.2 mA
2, 3 14
HCPL-3760 0.87 1.2 1.56
ITH- HCPL-0370/3700 1.00 1.3 1.62 VIN = VTH-; VCC = 4.5 V;
VO = 2.4 V; IOH 100 µA
HCPL-3760 0.43 0.6 0.80
Input
Threshold
Voltage
DC
(Pins
2, 3)
VTH+ 3.35 3.7 4.05 V VIN = V2 - V3; Pins 1 & 4 Open
VCC = 4.5 V; VO = 0.4 V;
IO 4.2 mA
VTH- 2.01 2.6 2.86 V VIN = V2 - V3; Pins 1 & 4 Open
VCC = 4.5 V; VO = 2.4 V;
IO 100 µA
AC
(Pins
1, 4)
VTH+ 4.23 4.9 5.50 V VIN = |V1 - V4|;
Pins 2 & 3 Open
VCC = 4.5 V; VO = 0.4 V;
IO 4.2 mA
14, 15
VTH- 2.87 3.7 4.20 V VIN = |V1 - V4|;
Pins 2 & 3 Open
VCC = 4.5 V; VO = 2.4 V;
IO 100 µA
Hysteresis IHYS HCPL-0370/3700 1.2 mA IHYS = ITH+ – ITH- 2
HCPL-3760 0.6
VHYS 1.2 V VHYS = VTH+VTH-
Input Clamp
Voltage
VIHC1 5.4 6.0 6.6 V VIHC1 = V2 - V3; V3 = GND;
IIN = 10 mA; Pins 1 & 4
Connected to Pin 3
1
VIHC2 6.1 6.7 7.3 V VIHC2 = |V1 - V4|;
|IIN| = 10 mA;
Pins 2 & 3 Open
VIHC3 12.0 13.4 V VIHC3 = V2 - V3; V
3 = GND;
IIN = 15 mA; Pins 1 & 4 Open
VILC -0.76 V VILC = V2 - V3; V
3 = GND;
IIN = -10 mA
Input Current IIN HCPL-0370/3700 3.0 3.7 4.4 mA VIN = V2 V3 = 5.0 V
Pins 1 & 4 Open
5
HCPL-3760 1.5 1.8 2.2
Bridge Diode
Forward Voltage
VD1,2 HCPL-0370/3700 0.59 V IIN = 3 mA
HCPL-3760 0.51 IIN = 1.5 mA
VD3,4 HCPL-0370/3700 0.74 IIN = 3 mA
HCPL-3760 0.71 IIN = 1.5 mA
Logic Low
Output Voltage
VOL 0.1 0.4 V VCC = 4.5 V; IOL = 4.2 mA 5 14
Logic High
Output Current
IOH 100 µA VOH = VCC = 18 V 14
Logic Low
Supply Current
ICCL HCPL-0370/3700 1.2 4 mA V2 V3 = 5.0 V; VO = Open; 6
HCPL-3760 0.7 3 VCC = 5.0 V
Logic High
Supply Current
ICCH 0.002 4 µA VCC = 18 V; VO = Open 4 14
Input
Capacitance
CIN 50 pF f = 1 MHz; VIN = 0 V,
Pins 2 & 3, Pins 1 & 4 Open
9
Parameter Sym. Device Min. Typ. Max. Units Test Conditions Fig. Note
Propagation Delay HCPL-0370/3700 4.0
Time to Logic Low tPHL 15.0 µs RL = 4.7 kW, CL = 30 pF 10
at Output HCPL-3760 4.5
7, 10
Propagation Delay HCPL-0370/3700 10.0
Time to Logic High tPLH 40.0 µs RL = 4.7 kW, CL = 30 pF 11
at Output HCPL-3760 8.0
HCPL-0370/3700 20
Output Rise Time tr µs RL = 4.7 kW, CL = 30 pF
(10-90%) HCPL-3760 14
8
HCPL-0370/3700 0.3
Output Fall Time tf µs RL = 4.7 kW, CL = 30 pF
(90-10%) HCPL-3760 0.4
Common Mode IIN = 0 mA, RL = 4.7 kW,
Transient Immunity |CMH| 4000 V/µs VO min = 2.0 V, VCM = 1400 V
at Logic High Output
9, 11 12, 13
Common Mode HCPL-0370/3700 IIN = 3.11 mA RL = 4.7 kW,
Transient Immunity |CML| 600 V/µs VO max = 0.8 V,
at Logic Low Output HCPL-3760 IIN = 1.56 mA VCM = 140 V
Switching Specifications
TA = 25°C, VCC = 5.0 V, Unless Otherwise Specified.
Package Characteristics
Over Recommended Temperature TA = 0°C to 70°C, Unless Otherwise Specified.
Parameter Sym. Min. Typ.[9] Max. Units Conditions Fig. Note
Input-Output Momentary VISO 3750 V rms RH 50%, t = 1 min; 16,
Withstand Voltage* TA = 25°C 17
Option 020 5000 18
Input-Output Resistance RI-O 1012 W VI-O = 500 Vdc 16
Input-Output Capacitance CI-O 0.6 pF f = 1 MHz; VI-O = 0 Vdc
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous volt-
age rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-5 Insulation Characteristics Table (if applicable), your equipment
level safety specification, or Avago Application Note 1074, “Optocoupler Input-Output Endurance Voltage.
10
Notes:
1. Measured at a point 1.6 mm below seating plane.
2. Current into/out of any single lead.
3. Surge input current duration is 3 ms at 120 Hz pulse repetition rate. Transient input current duration is 10 µs at 120 Hz pulse repetition rate.
Note that maximum input power, PIN, must be observed.
4. Derate linearly above 70°C free-air temperature at a rate of 4.1 mW/°C (HCPL-3700/3760) and 3.1 mW/°C (HCPL-0370). Maximum input power
dissipation of 230 mW (HCPL-3700/3760) and 172 mW (HCPL-0370) allows an input IC junction temperature of 125°C at an ambient tempera-
ture of TA = 70°C. Excessive PIN and TJ may result in IC chip degradation.
5. Derate linearly above 70°C free-air temperature at a rate of 5.4 mW/°C (HCPL-3700/3760) and 5 mW/°C (HCPL-0370).
6. Derate linearly above 70°C free-air temperature at a rate of 3.9 mW/°C (HCPL-3700/3760) and 1.9 mW/°C (HCPL-0370). Maximum output
power dissipation of 210 mW (HCPL-3700/3760) and 103 mW (HCPL-0370) allows an output IC junction temperature of 125°C at an ambient
temperature of TA = 70°C.
7. Derate linearly above 70°C free-air temperature at a rate of 0.6 mA/°C.
8. Maximum operating frequency is defined when output waveform Pin 6 obtains only 90% of VCC with RL = 4.7 kW, CL = 30 pF using a 5 V square
wave input signal.
9. All typical values are at TA = 25°C, VCC = 5.0 V unless otherwise stated.
10. The tPHL propagation delay is measured from the 2.5 V level of the leading edge of a 5.0 V input pulse (1 µs rise time) to the 1.5 V level on the
leading edge of the output pulse (see Figure 10).
11. The tPLH propagation delay is measured from the 2.5 V level of the trailing edge of a 5.0 V input pulse (1 µs fall time) to the 1.5 V level on the
trailing edge of the output pulse (see Figure 10).
12. Common mode transient immunity in Logic High level is the maximum tolerable (positive) dVCM/dt on the leading edge of the common
mode pulse, VCM, to insure that the output will remain in a Logic High state (i.e., VO > 2.0 V). Common mode transient immunity in Logic Low
level is the maximum tolerable (negative) dVCM/dt on the trailing edge of the common mode pulse signal, VCM, to insure that the output will
remain in a Logic Low state (i.e., VO < 0.8 V). See Figure 11.
13. In applications where dVCM/dt may exceed 50,000 V/µs (such as static discharge), a series resistor, RCC, should be included to protect the de-
tector IC from destructively high surge currents. The recommended value for RCC is 240 ý per volt of allowable drop in VCC (between Pin 8 and
VCC) with a minimum value of 240 ý.
14. Logic low output level at Pin 6 occurs under the conditions of VIN ž VTH+ as well as the range of VIN > VTH– once VIN has exceeded VTH+. Logic high
output level at Pin 6 occurs under the conditions of VIN VTH- as well as the range of VIN < VTH+ once VIN has decreased below VTH-.
15. AC voltage is instantaneous voltage.
16. Device considered a two terminal device: Pins 1, 2, 3, 4 connected together, and Pins 5, 6, 7, 8 connected together.
17. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 4500 V rms for 1 second (leakage
detection current limit, Ii-o 5 µA).
18. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 6000 V rms for 1 second (leakage
detection current limit, Ii-o 5 µA). This test is performed before the 100% production test for partial discharge (Method b) shown in the IEC/
EN/DIN EN 60747-5-5 Insulation Characteristics Table.
Figure 1. Typical input characteristics, IIN vs. VIN
(AC voltage is instantaneous value).
Figure 2. Typical transfer characteristics.
Input Signal Device TH+ TH– Input Connection
ITH HCPL-0370/3700 2.5 mA 1.3 mA PINS 2, 3 OR 1, 4
HCPL-3760 1.2 mA 0.6 mA
VTH(DC) ALL 3.7 V 2.6 V PINS 2, 3
VTH(AC) ALL 4.9 V 3.7 V PINS 1, 4
11
Figure 5. Typical input current, IIN, and low level output voltage, VOL, vs. temperature.
Figure 6. Typical logic low supply current vs. supply voltage.
Figure 4. Typical high level supply current, ICCH vs.
temperature.
Figure 3. Typical DC threshold levels vs. temperature.
VTH – VOLTAGE THRESHOLD – V
TA – TEMPERATURE – °C
2.4
-20
4.2
0 40 60
1.8
3.4
3.8
-40 80
2.2
2.0
20
HCPL-0370/3700
2.6
2.8
3.0
3.2
3.6
4.0
1.4
3.2
0.8
2.4
2.8
1.2
1.0
1.6
1.8
2.0
2.2
2.6
3.0
ITH – CURRENT THRESHOLD – mA
ITH+
VTH-
ITH-
VTH+
VTH – VOLTAGE THRESHOLD – V
T
A
– TEMPERATURE – °C
2.4
-25
HCPL-3700 fig 3b
4.2
0 50 75
1.8
3.4
3.8
-40 85
2.2
2.0
25
HCPL-3760
2.6
2.8
3.0
3.2
3.6
4.0
0.7
1.6
0.4
1.2
1.4
0.6
0.5
0.8
0.9
1.0
1.1
1.3
1.5
ITH – CURRENT THRESHOLD – mA
VTH+
ITH+
VTH-
ITH-
ICCH – HIGH LEVEL SUPPLY CURRENT – µA
TA – TEMPERATURE – °C
-25
HCPL-3700 fig 4
100
0 50 75
10-5
10-1
-40 85
10-4
25
10-3
10-2
VCC = 18 V
VO = OPEN
IIN = 0 mA
ICCH ICCH
IIN – INPUT CURRENT – mA
TA – TEMPERATURE – °C
1.2
-25
HCPL-3700 fig 5b
2.1
0 50 75
0.9
1.7
1.9
-40 85
1.1
1.0
25
HCPL-3760
1.3
1.4
1.5
1.6
1.8
2.0
60
240
0
160
200
40
20
80
100
120
140
180
220
VOL – LOW LEVEL OUTPUT VOLTAGE – mV
VIN = 5.0 V
(PINS 2, 3)
VCC = 5.0 V
IIN
VCC = 5.0 V
IOL = 4.2 mA
VOL
IIN – INPUT CURRENT – mA
TA – TEMPERATURE – °C
2.4
-20
4.2
0 40 60
1.8
3.4
3.8
-40 80
2.2
2.0
20
HCPL-0370/3700
2.6
2.8
3.0
3.2
3.6
4.0
60
240
0
160
200
40
20
80
100
120
140
180
220
VOL – LOW LEVEL OUTPUT VOLTAGE – mV
VIN = 5.0 V
(PINS 2, 3)
VCC = 5.0 V
IIN
VCC = 5.0 V
IOL = 4.2 mA
VOL
ICCL – LOGIC LOW SUPPLY CURRENT – mA
VCC – SUPPLY VOLTAGE – V
2.50
2.00
6.0
4.00
8.0 12.0 14.0
0
3.00
3.50
4.0 20.018.0
1.50
1.00
0.50
10.0 16.0
HCPL-0370/3700
ICCL – LOGIC LOW SUPPLY CURRENT – mA
VCC – SUPPLY VOLTAGE – V
1.50
6.0
HCPL-370 fig 6b
3.00
8.0 12.0 14.0
0
2.00
2.50
4.0 20.018.0
1.00
0.50
10.0 16.0
HCPL-3760
12
Figure 7. Typical propagation delay vs. temperature.
Figure 8. Typical rise, fall times vs. temperature.
Figure 9. Common mode transient immunity
vs. common mode transient amplitude.
tp – PROPAGATION DELAY – µs
TA – TEMPERATURE – °C
6
-20
24
0 40 60
0
16
20
-40 80
4
2
20
HCPL-0370/3700
8
10
12
14
18
22
RL = 4.7 k
CL = 30 pF
VCC = 5.0 V
VIN =
tPLH
5.0 V
1 ms PULSE WIDTH
f = 100 Hz
tr, tf = 1 µs (10-90%)
tPHL
tp – PROPAGATION DELAY – µs
TA – TEMPERATURE – °C
6
-25
HCPL-3700 fig 7b
24
0 50 75
0
16
20
-40 85
4
2
25
HCPL-3760
8
10
12
14
18
22 RL = 4.7 k
CL = 30 pF
VCC = 5.0 V
VIN =
tPLH
5.0 V
1 ms PULSE WIDTH
f = 100 Hz
tr, tf = 1 µs (10-90%)
tPHL
tr – RISE TIME – µs
TA – TEMPERATURE – °C
-20
60
0 40 60
0
40
50
-40 80
10
20
HCPL-0370/3700
20
30
RL = 4.7 k
CL = 30 pF
VCC = 5.0 V
VIN =
tr
5.0 V
1 ms PULSE WIDTH
f = 100 Hz
tr, tf = 1 µs (10-90%)
600
0
400
500
100
200
300
tf – FALL TIME – ns
tf
tr – RISE TIME – µs
TA – TEMPERATURE – °C
-25
HCPL-3700 fig 8b
30
0 50 75
0
20
25
-40 85
5
25
HCPL-3760
10
15
RL = 4.7 k
CL = 30 pF
VCC = 5.0 V
VIN =
tf
5.0 V
1 ms PULSE WIDTH
f = 100 Hz
tr, tf = 1 µs (10-90%)
tr
tf – FALL TIME – ns
700
100
500
600
200
300
400
CM – COMMON MODE TRANSIENT IMMUNITY – V/ µs
VCM – COMMON MODE TRANSIENT AMPLITUDE – V
400
5000
800 1600
0
3000
4000
0 2000
500
1200
1000
2000
VCC = 5.0 V
IIN = 0 mA
VOH = 2.0 V
RL = 4.7 k
TA = 25 °C
CMLCMH
VCC = 5.0 V
IIN = 3.11 mA (0370/3700)
IIN = 1.53 mA (3760)
VOL = 0.8 V
RL = 4.7 k
TA = 25 °C
13
Figure 12. Typical external threshold characteristics, V ± vs. RX.
Figure 10. Switching test circuit.
Figure 11. Test circuit for common mode transient immunity and typical waveforms.
For product information and a complete list of distributors, please go to our website: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2009 Avago Technologies. All rights reserved. Obsoletes AV01-0542EN
AV02-2107EN - September 2, 2009
Electrical Considerations
The HCPL-0370/3700/3760 optocoup lers have internal
temperature compen sated, predictable volt age and cur-
rent threshold points which allow selection of an exter-
nal resistor, RX, to determine larger external threshold
voltage levels. For a desired external threshold voltage,
V±, a corre sponding typical value of RX can be ob tained
from Figure 12. Specific calculation of RX can be obtained
from Equation (1). Specification of both V+ and V- voltage
threshold levels simul taneously can be obtained by the
use of RX and RP as shown in Figure 13 and determined by
Equations (2) and (3).
RX can provide over-current transient protection by
limiting input current during a transient condition.
For monitoring con tacts of a relay or switch, the HCPL-
0370/3700/3760 in combina tion with RX and RP can be
used to allow a specific current to be conducted through
the contacts for clean ing purposes (wetting current).
The choice of which input voltage clamp level to choose
depends upon the application of this device (see Figure
1). It is recom mended that the low clamp condition be
used when possible.
The low clamp condition in conjunction with the low
input current feature will ensure extremely low input
power dissipation.
In applications where dVCM/dt may be extremely large
(such as static discharge), a series resis tor, RCC, should
be con nected in series with VCC and Pin 8 to pro tect the
detector IC from destruc tively high surge currents. See
Note 13 for deter mination of RCC. In addi tion, it is recom-
mended that a ceramic disc by pass capacitor of 0.01 µF
be placed between Pins 8 and 5 to reduce the effect of
power supply noise.
V+ - VTH+
(-) (-)
RX = (1)
ITH+
(-)
For two specifically selected external threshold voltage
levels, V+ and V-, the use of RX and RP will permit this selec-
tion via equations (2), (3) provided the following condi-
tions are met. If the denominator of equation (2) is posi-
tive, then
V+ VTH+ V+ - VTH+ ITH+
and <
V- VTH- V- - VTH- ITH-
Conversely, if the denominator of
equation (2) is negative, then
V+ VTH+ V+ - VTH+ ITH+
and >
V- VTH- V- - VTH- ITH-
VTH- (V+) - VTH+ (V-)
RX = (2)
ITH+ (VTH-) - ITH- (VTH+)
VTH- (V+) - VTH+ (V-)
RP = (3)
ITH+(V--VTH-)+ITH-(VTH+-V+)
Figure 13. External threshold voltage level selection.
For interfacing ac signals to TTL systems, output low
pass filtering can be performed with a pullup resistor of
1.5 kW and 20 µF capacitor. This application requires a
Schmitt trigger gate to avoid slow rise time chatter prob-
lems. For ac input applica tions, a filter capacitor can be
placed across the dc input terminals for either signal or
transient filtering.
Either ac (Pins 1, 4) or dc (Pins 2, 3) input can be used to
determine external threshold levels.
For one specifically selected external threshold voltage
level V+ or V-, RX can be determined without use of RP via