7
Electrical/Optical Characteristics at TA = 25°C
Parameter Symbol Min. Typ. Max. Units Test Conditions
Forward Voltage IF = 20 mA
Amber (λd = 590 nm) 2.02
Orange (λd = 605 nm) VF1.98 2.4 V
Red-Orange (λd = 615 nm) 1.94
Red (λd = 626 nm) 1.90
Reverse Voltage VR520 VI
F
= 100 µA
Peak Wavelength: Peak of Wavelength of
Amber (λd = 590 nm) 592 Spectral Distribution
Orange (λd = 605 nm) λPEAK 609 nm at IF = 20 mA
Red-Orange (λd = 615 nm) 621
Red (λd = 626 nm) 635
Spectral Halfwidth ∆λ1/2 17 nm Wavelength Width at
Spectral Distribution
1/2 Power Point at
IF = 20 mA
Speed of Response τs20 ns Exponential Time
Constant, e-t/τ
Capacitance C 40 pF VF = 0, f = 1 MHz
Thermal Resistance RθJ-PIN 240 °C/W LED Junction-to-Cathode
Lead
Luminous Efficacy[1] Emitted Luminous
Amber (λd = 590 nm) 480 Power/Emitted Radiant
Orange (λd = 605 nm) ηv370 lm/W Power
Red-Orange (λd = 615 nm) 260
Red (λd = 626 nm) 150
Note:
1. The radiant intensity, Ie, in watts per steradian, may be found from the equation Ie = Iv/ηv, where Iv is the luminous intensity in
candelas and ηv is the luminous efficacy in lumens/watt.
Absolute Maximum Ratings at TA = 25°C
DC Forward Current[1,2,3] ............................................................ 50 mA
Peak Pulsed Forward Current[2,3] .............................................. 100 mA
Average Forward Current[3] ......................................................... 30 mA
Reverse Voltage (IR = 100 µA) ......................................................... 5 V
LED Junction Temperature.......................................................... 130°C
Operating Temperature .............................................. -40°C to +100°C
Storage Temperature .................................................. -40°C to +120°C
Dip/Drag Soldering Temperature ........................... 260°C for 6 seconds
Through-the-Wave Preheat Temperature ......................................145°C
Through-the-Wave Solder Temperature ................. 245°C for 3 seconds
[1.59 mm (0.060 in.) below seating plane]
Notes:
1. Derate linearly as shown in Figure 4.
2. For long term performance with minimal light output degradation, drive currents
between 10 mA and 30 mA are recommended. For more information on recommended
drive conditions, please refer to Application Brief I-024 (5966-3087E).
3. Operating at currents below 1 mA is not recommended. Please contact your local
representative for further information.
s