© INTEL CORPORATION, 1996 June 1996 Order Number: 272886-001
APRELIMINARY
80960CF-40, -33, -25, -16
32-BIT HIGH-PERFORMANCE SUPERSCALAR
EMBEDDED MICROPROCESSOR
• Socket and Object Code Compatible with 80960CA
• Two Instructions/Clock Sustained Execution
• Four 71 Mbytes/s DMA Channels with Data Chaining
• Demultiplexed 32-Bit Burst Bus with Pipelining
32-Bit Parallel Architecture
Two Instructions/clock Execution
Load/Store Architecture
Sixteen 32-Bit Global Registers
Sixteen 32-Bit Local Registers
Manipulates 64-Bit Bit Fields
11 Addressing Modes
Full Parallel Fault Model
Supervis or Protection Model
Fast Procedure Call/Return Model
Full Procedure Call in 4 Clocks
On-Chip Register Cache
Caches Registers on Call/Ret
Minimum of 6 Frames Provide d
Up to 15 Programmable Frames
On-Chip Instruction Cache
4 Kbyte Two-W ay Set Associati ve
128-Bit Path to Instruction Sequencer
Cache-Lock Modes
Cache-Off Mode
High Bandwidth On-Chip Data RAM
1 Kbyte On-Chip Data RAM
Sustains 128 bits per Clock Access
Selectable Big or Little Endian Byte
Ordering
Four On-Chip DMA Channels
71 Mbytes/s Fly-by Transfers
40 Mbytes/s Two-Cycle Transfers
Data Chaining
Data Packing/Unpacking
Programmable Priority Method
32-Bit Demultiplexed Burst Bus
128-Bit Internal Data Paths to
and
from
Registers
Burst Bus for DRAM Interfacing
Address Pipelining Option
Fully Programmable Wait States
Supports 8-, 16- or 32-Bit Bus Widths
Supports Unaligned Accesses
Supervisor Protection Pin
High-Speed Interrupt Controller
Up to 248 External Interrupts
32 Fully Programmable Priorities
Multi-mode 8-Bit Interrupt Port
Four Internal DMA Interrupts
Separate, Non-maskable Interrupt Pin
Context Switch in 625 ns Typical
On-Chip Data Cache
1 Kbyte Direct-Mapped, Write Through
128 bits per Clock Acces s on Cache Hit
Information in th is document is provided in connection with Intel products. No license, express or imp lied, by
estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or
warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright
or other intellectual property right. Intel products are not intended for use in medical, life saving, or life
sustaining applications.
Intel retains the right to make changes to specifications and product descriptions at any time, without notice.
*Third-party brands and names are the property of their respective owners.
Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:
Intel Corporation
P.O. Box 7641
Mt. Prospect IL 60056-7 64
or call 1-800-548-4725
PRELIMINARY iii
ACONTENTS
80960CF-40, -33, -25, -16
32-BIT HIGH-PERFORMANCE SUPERSCALAR
EMBEDDE D MICRO PROCESSOR
1. 0 PUR POS E ..... ..... .... ...... .... ...... ..... .... ...... ...... ... ...... ...... ...... ... ...... ...... ...... ... ...... ...... ...... ... ...... ...... ...... ... ...... ..1
2.0 80960CF OVERVIEW ............................ .. ........... .... .. .... .. ........... .... .. .... ........... .. .... .. ........... .... .. .... .. ........... .1
2.1 The 80960C-Series Core ....................................................................................................................3
2.2 Pipelined, Burst Bus ........ .......................................... .......................................... ...............................3
2.3 Instruction Set Summ ary ..... ........ ........ ... ........ ........ ... ........ ...... ....... .... ........ ........ ... ........ ........ ... ........ ..3
2.4 Flexible DMA Controller ... ..................... .......................................... .......................................... ..........3
2.5 Priority Interrupt Controller ....... ............. .......... ........... .......... ........... ............ ......... ............ ......... ..........4
3.0 PACKAG E INFORM ATION .......................... .......................................... .......................................... ..........5
3.1 Package Introduction ...................................................................... .......................................... ..........5
3.2 Pin Descriptions .................................... ........ ............. ........ ............. .......... ........... .......... ........... ..........5
3.3 80960CF Mechanical Data ................................ .... ........... .... .... .... ............. .... .... ........... .... .... ............12
3.3.1 80960CF PGA PINOUT ....................................................... .......................................... ........12
3.3.2 80960CF PQFP Pinout (80960CF-3 3, -25, -16 O nly) ............................... .............................16
3.4 Package Thermal Specif ications ..... ....... ................ ....... .............. ....... ................ ....... .............. ....... ..19
3.5 Stepping Register Inform ation . ............. ........ ............. ........ ............. .......... ........... .......... ........... ........22
3.6 Sources for Access ories ........ .............. ....... ............... ........ ............. ........ ............. .......... ........... ........22
4.0 ELECTRICAL SPECIFICATIONS ............................................................................................................23
4.1 Absolute Maximum Ratings ................................................................................. ..................... ........23
4.2 Operating Conditions ...................................................................... ..................................................23
4.3 Recommended Connections ........................................................ ........... .... .. .... ........... .. .... .. ........... .24
4.4 DC Specifications .............................................................................................................................24
4.5 AC Specifications ...... ....... ................ ....... .............. ....... ................ ....... .............. ....... ................ ....... ..26
4.5.1 AC TEST CONDI TIO NS ........... ... ........ ........ ... ........ ........ ..... ...... ...... ........ ... ........ ........ ... ........36
4.5.2 AC TIMIN G WAVE FO RM S ....... ... .... ...... .... ..... .... .... ...... .... ... .... ...... .... ...... . ...... .... ...... .... ... ......37
4.5.3 DERATING CURVES ........ ........ ... ........ ...... ..... ...... ........ ....... .... ........ ........ ... ........ ...... ..... ...... ..41
5.0 RESET, BACKOFF AND HOLD ACKNOW LED GE ................................................................................42
6.0 BUS WAVEFORMS ..................................................................................................................................44
7.0 REVISION HISTORY ...............................................................................................................................71
iv PRELIMINARY
CONTENTS A
FIGURES
Figure 1. 80960CF Block Diagram ............................................................................................................2
Figure 2. 80960CF PGA Pinout—View from Top (Pins Facing Dow n) .. .......................................... ........1 2
Figure 3. 80960CF PGA Pinout — View from Bottom (Pins Fac ing Up) . ............ ....... .............. ....... ........13
Figure 4. 80960CF PQFP Pinout—Top View (80960CF-33, -25, -16 Only) ............................................19
Figure 5. Measuring 80960CF PGA and PQFP Case Temperat ure .......................................................2 0
Figure 6. Register g0 ...............................................................................................................................22
Figure 7. AC Test Load ...........................................................................................................................37
Figure 8. Input and Output Clocks Waveform .........................................................................................37
Figure 9. CLKIN Waveform .....................................................................................................................37
Figure 10. Output Delay and Float Waveform ...........................................................................................38
Figure 11. Input Setup and Hold Waveform .............................................................................................. 38
Figure 12. NMI, XINT7:0 Input Set up and Hold Waveform .......................................................................39
Figure 13. Hold Acknowledge Timings ............................... .......................................................................39
Figure 14. Bus Backoff (BOFF) Timings ...................................................................................................40
Figure 15. Relative Timings Waveforms ...................................................................................................40
Figure 16. Output Delay or Hold vs. Load Capacitance ............................................................................41
Figure 17. Rise and Fall Time Derating at Highest Operat ing Tem perat ure and Min imum V CC ...............41
Figure 18. ICC vs. Frequency and Temperature—80960CF-33, -25, -16 ..................................................42
Figure 19. ICC vs. Frequency and Temperature—80960CF -40 ................................................................42
Figure 20. Cold Reset Waveform ..............................................................................................................44
Figure 21. Warm Reset Waveform ............................................................................................................45
Figure 22. Entering the ONCE State ................. ................ ....... .............. ....... ............... ........ ............. ........46
Figure 23. Clock Sy nchroniz at ion in the 2-x Clock Mode ........................ ..................... .............................47
Figure 24. Clock Sy nchroniz at ion in the 1-x Clock Mode ........................ ..................... .............................47
Figure 25. Non-Burst, Non-Pipelined Requests Without Wait States ................................................ ........4 8
Figure 26. Non-Burst, Non-Pipelined Read Request With Wait States ... .......................................... ........4 9
Figure 27. Non-Burst, Non-Pipelined Write Request With Wait States ........................ .............................50
Figure 28. Burst, Non-Pipelined Read Request Without Wait States, 32-Bit Bus .....................................51
Figure 29. Burst, Non-Pipelined Read Request With Wait States, 32-Bit Bus ..........................................52
Figure 30. Burst, Non-Pipelined Write Request Without Wait States, 32-Bit Bus ........ ...... ........ ....... .... ....53
Figure 31. Burst, Non-Pipelined Write Request With Wait States, 32-Bit Bus ..........................................54
Figure 32. Burst, Non-Pipelined Read Request With Wait States, 16-Bit Bus ..........................................55
Figure 33. Burst, Non-Pipelined Read Request With Wait States, 8-Bit Bus ............................................56
Figure 34. Non-Burst, Pipelined Read Request Without Wait States, 32-Bit Bus .....................................57
Figure 35. Non-Burst, Pipelined Read Request With Wait States, 32-Bit Bus ..........................................58
Figure 36. Burst, Pipelined Read Request Without Wait States, 32-Bit Bus .............................................59
Figure 37. Burst, Pipelined Read Request With Wait States, 32-Bit Bus ..................................................60
Figure 38. Burst, Pipelined Read Request With Wait States, 16-Bit Bus ..................................................61
Figure 39. Burst, Pipelined Read Request With Wait States, 8-Bit Bus .. .......................................... ........6 2
PRELIMINARY v
ACONTENTS
Figure 40. Using Ex ternal REA DY ............................................................................................................ 63
Figure 41. Ter minating a Burst with BTERM ............................................................................................. 64
Figure 42. BOFF Functional Timing ..........................................................................................................65
Figure 43. HOLD Functional Timing .............................................................................. ............................66
Figure 44. DREQ and DACK Functional Timing .......................................................................................67
Figure 45. EOP Functional T iming ............................................................................................................67
Figure 46. Terminal Count Functional Timing ...........................................................................................68
Figure 47. FA IL Functional Timing ............................................................................................................68
Figure 48. A Summary o f Aligned and Unaligned Transfers for Little Endian Regions .............................69
Figure 49. A Summary o f Aligned and Unaligned Transfers for Little Endian Regions (Continued) .........70
Figure 50. Idle Bus Operation ... .......................................... .......................................... ............................71
TABLES
Table 1. 80960CF Instruction Set ......................................................... ...................................................4
Table 2. 80960CF Pin Description — E xternal Bus Signals ...................................... ..............................6
Table 3. 80960CF Pin Description — P rocessor Control Signals ............................................................9
Table 4. 80960CF Pin Description — DMA and Interrupt Unit Control Signals ..................................... 11
Table 5. 80960CF PGA Pinout — In Signal Order ................................................................................14
Table 6. 80960CF PGA Pinout — In Pin Order .....................................................................................15
Table 7. 80960CF PQFP Pinout — In Signal Order (80960CF-33, -25, -16 Only) ................................ 17
Table 8. 80960CF PQFP Pinout — In Pin Order (80960CF-33, -25, -16 On ly) .....................................1 8
Table 9. Maximum TA at Various Airflows in oC (PGA Package On ly) .................. ....... .............. ....... .....2 0
Table 10. 80960CF PGA Package Ther mal Charact erist ics .................. .......................................... .......21
Table 11. 80960CF PQFP Package Therm al Characteristics . ................................................................21
Table 12. Die Stepping Cross Reference ................................................................................................2 2
Table 13. Operating Conditions ...............................................................................................................23
Table 14. DC Characteristics ............................................................................................................ .......24
Table 15. 80960CF AC Characterist ics (40 MHz ) ............. .......................................... ............................26
Table 16. 80960CF AC Characterist ics (33 MHz ) ............. .......................................... ............................29
Table 17. 80960CF AC Characterist ics (25 MHz ) ............. .......................................... ............................32
Table 18. 80960CF AC Characterist ics (16 MHz ) ............. .......................................... ............................34
Table 19. Reset Conditions .............................................................................................................. .......43
Table 20. Hold Ack nowledge and Ba ckoff Conditions .............................................................................43
A80960CF-40, -33, -25, -16
PRELIMINARY 1
1.0 PURPOSE
This document provides electrical characteristics of
Intel’s i960® CF embedded microprocessor. For
functional descriptions consult the
i960
®
Cx Micro-
processor User’s Manual
(270710). To obtain data
sheet updates and errat a, contact Inte l at any of the
following numbers.
2.0 80960CF OVERVIEW
Intel’s 80960CF is the second processor in the series
of superscalar i960 microprocessors that also
includes the 80960CA and the 80960HA/HD/HT.
Upgrading from the 80960CA to the 80960CF is
straightforward because the two processors are
socket- and object code-co mpat ible.
As shown in Figure 1, the 80960CF’s instruction
cache is 4 Kbytes; data cache is 1 Kbyte (80960CA
instruction cache is 1 Kbyte; it does not have a data
cache.) This extra cache on the CF adds a signifi-
cant performanc e boost over the CA.
Intel’s World-Wid e Web (WW W ) Locati o n: http://www.intel.com/
Custo mer Sup port (US and Canad a): 800-628-8686
FaxBACK Service:
US and Canada
800-628-2283
Europe
+44(0)793-496646
worldwide
916-356-3105
Applicati o n Bulletin Board Service:
up to 14. 4-Kbaud line, worldwide
916-356-3600
dedicated 2400-baud line, worldwide
916-356-7209
Europe
+44(0)793-496340
2PRELIMINARY
80960CF-40, -33, -25, -16 A
Figure 1. 80960CF Block Diagram
Execution
Unit
Programmable
Bus Controller
Bus Request
Queues
Six-Port
Register File
64-Bit
SRC1 Bus
64-Bit
SRC2 Bus
64-Bit
DST Bus
32-Bit
Base Bus
128-Bit
Load Bus
128-Bit
Store Bus
Instruction
Instruction Cache
(4 Kbyte, Two-Way
Set Associative)
128-BIT CACHE BUS
Prefetch Queue
Interrupt Controller
Control
Address
Data
Memory-side
Machine Bus
Register-side
Machine Bus
Parallel
Instruction
Scheduler
Memory Region
Configuration
Multiply/Divide
Unit
Four-Channel
DMA Controller
Interrupt
Port
1 Kbyte
5 to 15 Sets
Register Cache
Data RAM
Address
Generation Unit
F_CF001A
DMA Port
1 Kbyte
Direct Mapped
Data Cache
The 80960CF, object code compatible with the 32-bit
80960 core Architecture, employs Special Function
Register extensions to control on-chip peripherals
and instruction set extensions to shift 64-bit
operands and configure on-chip hardware. Multiple
128-bit internal buses, on-chip instruction caching
and a sophisticated instruction scheduler allow the
processor to sustain execution of two instructions
per clock with peak execution of three instructions
per clock.
A 32-bit demultiplexed and pipelined burst bus
provides a 132 Mbyte/s bandwidth to a system’s
high-speed external memory subsystem. Also, the
80960CF’s on-chip caching of instructions, proce-
dure context and critical program data substantially
decouples system performance from the wait states
associated with accesses to the system’s slower,
cost sensitive, main memory subsystem.
The 80960CF bus controller integrates f ull wait state
and bus width control for highest system perfor-
mance with minimal system design complexity.
Unaligned access and Big Endian byte order support
reduces the cost of porting existing applications to
the 80960CF.
A80960CF-40, -33, -25, -16
PRELIMINARY 3
The processor also integrates four complete data-
chaining DMA channels and a high-speed interrupt
controller on-chip. DMA channels perform single-
cycle or two-cycle transfers, data packing and
unpacking and data chaining. Block transfers — in
addition to source or destination synchronize d trans-
fers — are supported.
The interrupt contro ller provides full programmability
of 248 interrupt sources int o 32 priority levels with a
typical interrupt tas k switch (lat ency) time of 62 5 ns .
2.1 The 80960C-Series Core
The C-Series core is a very high performance
microarchitect ural im p lementation of th e 80960 Cor e
Architecture. This core can sustain execution of two
instructions per clock (80 MIPS at 40 MHz). To
achieve this level of performance, Intel has incorpo-
rated state-of-the-art silicon technology and innova-
tive microarchitectural constructs into the C-Series
core implementation. Factors that contribute to the
core’s performance include:
Parallel instruction decoding allows issuance of up
to three instructions per clock
Single-clock execution of most instructions
Parallel instruction decode allows sustained,
simultaneous execution of two single-clock instruc-
tions every clock cyc le
Efficient instruction pipeline minimizes pipeline
break losses
Register and resource scoreboarding allow simul-
taneous multi-clock instruction execution
Branch look-ahead and prediction a llows many
branches to execute with no pipeline break
Local Register Cache integrated on-chip caches
Call/Return context
Two-way set associative, 4 Kbyte integr ated
instruction cac he
1 Kbyte integrated Data RAM sustains a four-word
(128-bit) access every clock cycle
Direct mapped, 1 Kbyte data cache, write through,
write allocate
2.2 Pipelined, Burst Bus
A 32-bit high performance bus controller interfaces
the 80960CF to external memory and peripherals.
The Bus Control Unit features a maximum transfer
rate of 160 Mbytes per second (at 40 MHz). Inter-
nally programmable wait states and 16 separately
configurable memory regions allow the processor to
interface with a variety of memory subsystems with a
minimum of system complexity and a maximum of
performance. The Bus Control Unit’s main features
include:
Demultiplexed, burst bus to exploit most efficient
DRAM access modes
Address pipelining to reduce memory cost while
maintaining performance
32-, 16- and 8-bit modes for I/O interfacing ease
Full internal wait state generation to reduce system
cost
Little and Big Endian support to ease application
development
Unaligned access support for code portability
Three-deep request queue to decouple the bus
from the core
2.3 Instruction Set Summary
Table 1 summarizes the 80960CF instruction set by
logical groupings. See the
i960
®
Cx Microprocessor
User’s Manual
(270710) for a complete description
of the instruction set .
2.4 Flexible DMA Controller
A four-channel DMA controller provides high speed
DMA control for data transfers involving peripherals
and memory. The DMA provides advanced features
such as data chaining, byte assembly and disas-
sembly and a high perform ance fly-by mode ca pable
of transfer s peeds of up to 71 Mbytes per second at
40 MH z. The DMA c ontr oller feat ures a p erfor mance
and flexibility which is only possible by integrating
the DMA controller and the 80960CF core .
80960CF-40, -33, -25, -16 A
4PRELIMINARY
2.5 Priority Interrupt Controller
A programmable-priority interrupt controller
manages up to 248 external sources through the 8-
bit external interrupt port. The Interrupt Unit also
handles the four internal sources from the DMA
controller and a single non-maskable interrupt input.
The 8-bit interrupt port can also be configured to
provide individual interrupt sources that are level or
edge triggered.
80960CF interrupts are prioritized and signaled
within 225 ns of the request. If the interrupt is of
higher priority than the processor priority, the context
switch to the interrupt routine typically completes in
another 400 ns. The interrupt unit provides the
mechanism for the low latency and high throughput
interrupt service which is essential for embedded
applications.
Tab le 1. 80960CF Instruction Set
Data Movement Arithmetic Logical Bi t / Bit F iel d / Byte
Load
Store
Move
Load Address
Add
Subtract
Multiply
Divide
Remainder
Modulo
Shift
*Extended Shift
Extended Multiply
Extended Divide
Add with Carry
Subtract with Carry
Rotate
And
Not And
And Not
Or
Exclusive Or
Not Or
Or Not
Nor
Exclusive Nor
Not
Nand
Set Bit
Clear Bit
Not Bit
Alt er Bit
Scan For Bit
Span Over Bit
Extract
Modify
Scan Byte for Equal
Comparison Branch Call/Return Fault
Compare
Conditional Compare
Compare and Increment
Compare and Decrement
Test Condition Code
Check Bit
Unconditio na l Branch
Conditional Branch
Compare and Branch
Call
Call Extended
Call System
Return
Branch and Link
Conditional Fault
Synchronize Faults
Debug Processor Mgmt Atomic
Modify Trace Controls
Mark
Force Mark
Flush Local Registers
Modify Arithmetic Controls
Modify Process Controls
*System Control
*DMA Control
Atomic Add
Atomic Modify
NOTES: Instruct io ns marke d by (*) are 80960Cx extensions to th e 80960 instruct ion set.
A80960CF-40, -33, -25, -16
PRELIMINARY 5
3.0 PACKAGE INFORMATION
3.1 Package Introduction
This section d escribes the pins, pinouts and thermal
characteristics for the 80960CF in the 168-pin
Ceramic Pin Grid Array (PGA) package; the
80960CF-33, -25, -16 devices are also available in
the 196-pin Plastic Quad Flat Package (PQFP). For
complete package specifications and information,
see the
Packaging
Handbook (# 240800).
3.2 Pin Descriptions
This section defines the 80960CF pins. Table 2
presents the legend for interpreting the pin descrip-
tions in the follow ing tables. Pins ass ociat ed w ith the
32-bit demultiplexed processor bus are described in
Table 2. Pins associated with the 80960CF DMA
Controller and Interrupt Unit are described in Table 3.
Pins associated with basic processor configuration
and control are described in Table 2.
All pins float while the processor is in the ONCE
mode.
Symbol Description
IInput only pin
OOutput on ly pin
I/O Pin can be either an input or output
Pins “m ust be” connected as descr ib ed
S(...) Synchronous. Inputs mus t meet setup
and hold times relative to PCLK2:1 for
proper operation. Output s are synchro-
nous to PCLK2:1.
S(E) Edge sensitive input
S(L) Level sensitive input
A(...) Asynchronous. Inputs may be asynchro-
nous to PCLK2:1.
A(E) Edge sensitive input
A(L) Level sensitive input
H(...) While the bus is in the Hold Acknowledge
or Bus Backoff state, the pin:
H(1) is driven to VCC
H(0) is driven to VSS
H(Z) floats
H(Q) continues to be a valid input
R(...) While the processor’s RESET pin is low,
the pin:
R(1) is driven to VCC
R(0) is driven to VSS
R(Z) floats
R(Q) continues to be a valid output
6PRELIMINARY
80960CF-40, -33, -25, -16 A
Tab le 2. 80960CF Pin Description — External Bu s Signals (Sheet 1 of 3)
Name Type Description
A31:2 O
S
H(Z)
R(Z)
ADDRESS BUS carries the physical address’ upper 30 bits. A31 is the most significant
bit; A2 is least significant. During a bus access, A31:2 identify all external addresses to
word (4-byte) boundaries. By te enable signals indicate the select ed byte in each word.
During burst accesses, A3:2 increment to indicate successive data cy cles.
D31:0 I/O
S(L)
H(Z)
R(Z)
DATA BUS carries 32-, 16- or 8-bit data quantities depending on bus width configura-
tion. The least significant bit is carried on D0 and the most significant on D31. When the
bus is configured for 8-bit data, the lower 8 data lines, D7:0 are used. F or 16-b it data
bus widths, D15:0 are used. For 32-bit bus widths the full data bus is used.
BE3:0 O
S
H(Z)
R(1)
BYTE ENABLES select which of the four bytes addressed by A31: 2 are active during
an access to a memory region c onfigured fo r a 32-bit data-bus width. BE3 applies t o
D31:24; BE2 applies to D23:16; BE1 applies to D15:8 BE0 applies to D7:0.
32-bit bus:
BE3 Byte Enable 3 enable D31:24
BE2 Byte Enable 2 enable D23:16
BE1 Byte Enable 1 enable D15:8
BE0 Byte Enable 0 enable D7:0
For accesses to a memory region configur ed for a 16-bit data-bus width, the proces sor
uses the BE3, B E1 and BE0 pins as BHE, A1 and BLE respectively.
16-bit bus:
BE3 Byte High Enable (BHE) enable D15:8
BE2 Not used (driven high or low)
BE1 Address Bit 1 (A1)
BE0 Byte Low Enable (BLE) enable D7:0
For accesses to a memory region configur ed for an 8-bit data-bus width, the proces sor
uses the BE1 and BE0 pins as A1 and A0 respectively.
8-bit bus:BE3 Not used (driven high or low)
BE2 Not used (driven high or low)
BE1 Address Bit 1 (A1)
BE0 Address Bit 0 (A0)
W/R O
S
H(Z)
R(0)
WRITE/READ is asserted for read request s and deassert ed for write reques ts . The
W/R signal changes in the same clock cycle as ADS. It remains valid for the entire
access in non-pipelined regions. In pipelined regions, W/R is not guaranteed to be valid
in the last cycle of a read access.
ADS O
S
H(Z)
R(1)
ADDRESS STROBE indicates a valid addre ss and the start of a new bus ac cess. ADS
is asserted for the first clock of a bus access.
READY I
S(L)
H(Z)
R(Z)
READY is an input which signals the termination of a data transfer. READY is u sed to
indicate that read data on the bus is valid or that a write-data transf er has completed.
The READY signal works in conjunction with the interna lly programm ed wait-st ate
generator. If READY is enabled in a region, the pin is sampled aft er the program med
number of wait-states has expired. If the READY pin is deasserted, wait states continue
to be inserted until READY becomes assert ed. Th is is true for the NRAD, NRDD, NWAD
and NWDD wait states . The NXDA wait states cannot be extended.
PRELIMINARY 7
A80960CF-40, -33, -25, -16
BTERM I
S(L)
H(Z)
R(Z)
BURST TERMI NATE is an input which breaks up a burst access and causes another
address cycle to occur. The BTERM signal works in conjunction with the internally
programmed wait-stat e generator. If READY and BTERM are enabled in a region, the
BTERM pin is sampled after the programmed num ber of wa it states has expired. When
BTERM is asserted, a new ADS signal is generated and the access is completed. T he
READY input is ignored when B TERM is asserted. BTERM must be externally synchro-
nized to satisfy BTERM setup and hold t imes.
WAIT O
S
H(Z)
R(1)
WAIT indicates internal wait stat e generat or stat us. WAIT is asserted when wait states
are being caused by the internal wait state generator and not by the READY or BTERM
inputs. WAIT can be used to derive a write-data strobe. WA IT can also be thought of as
a READY output that the processor provides when it is inserting wait states .
BLAST O
S
H(Z)
R(0)
BURST LAST indicates the last transfer in a bus access. BLAST is asserted in the last
data transfer of burst and non-burst accesses after the wait state counter reaches zero.
BLAST remains asser ted until the clock following the last cycle of the last data transfer
of a bus access. If the READY or BTER M input is used to extend wait states, t he
BLAST signal remains asserted until READY or BTERM terminates the access .
DT/R O
S
H(Z)
R(0)
DATA TRANSMIT/RECE IVE indic ates direction for data tra nsceiver s. DT/R is used in
conjunction with DEN to provide control for data transceivers attached to the external
bus. When DT/R is asserted, the signal indicates t hat the proces sor receiv es data.
Conversely, when deasserte d, the proces sor sends data. DT /R changes only while
DEN is high.
DEN O
S
H(Z)
R(1)
DATA ENABLE indicates data cycles in a bus request . DEN is asserted at the st art of
the bus request first data cycle and is deasserted at the end of the last data cycle. DEN
is used in conjunction with DT/R to provide control for data transceivers attached to the
external bus. DEN rema ins assert ed for sequent ial reads from pipelined memory
regions. DEN is deassert ed when DT/R changes.
LOCK O
S
H(Z)
R(1)
BUS LOCK indicates that an atomic read-m odify- write operat ion is in progress. LOCK
may be used to prevent extern al agents from access in g memory which is currently
involved in an atomic operation. LOCK is asserted in the first clock of an atomic opera-
tion and deasserted in the clock cycle following the last bus access for the atomic
operation. To allow the most flexibility for memory system enfor ceme nt of locked
accesses, the processor acknowledges a bus hold request when LOCK is as serted.
The processor perform s DMA transfers while LOCK is activ e.
HOLD I
S(L)
H(Z)
R(Z)
HOLD REQ UE ST signals that an external agent requests acces s to the external bus.
The processor asserts HOLDA afte r completing the current bus reques t. HOLD,
HOLDA and BREQ are used toget her to arbitrat e acces s to the processors externa l
bus by external bus agents.
BOFF I
S(L)
H(Z)
R(Z)
BUS BACKOFF, when asserted, suspends the current access and causes the bus pins
to float. When BOFF is deassert ed, the AD S signal is asserted on the next clock cycle
and the access is resumed.
Tab l e 2. 80960CF Pin Description — Exte rnal Bus Signal s (Sheet 2 of 3)
Name Type Description
8PRELIMINARY
80960CF-40, -33, -25, -16 A
HOLDA O
S
H(1)
R(Q)
HOLD ACKNOW LEDG E indicates to a bus requestor that the processor has relin-
quished control of the external bus. When HOLDA is asserted, the ext ernal address
bus, data bus and bus control signals are floated. HOLD, BOFF, HOLDA and BREQ are
used together to arbitrate access to the processor’s external bus by external bus
agents. Since the processor grant s HOLD requests and enters the Hold Acknowledge
state even while RESET is asserted, the state of the HO LDA pin is independent of the
RESET pin.
BREQ O
S
H(Q)
R(0)
BUS REQUEST is asserted when the bus controller has a request pending. BREQ can
be used by external bus arbitration logic in conjunction with HOLD and HOLDA to deter-
mine when to return masters hip of the external bus to the proc essor.
D/C O
S
H(Z)
R(Z)
DATA OR CODE is asserted for a data request and deasserted for instruction requests.
D/C has the sam e timing as W/R .
DMA O
S
H(Z)
R(Z)
DMA ACCESS indicates whether the bus request was initiated by the DMA controller.
DMA is asserted for any DMA request . DMA is deasserted for all other requests.
SUP O
S
H(Z)
R(Z)
SUPERVISOR ACCESS indicates whether the bus request is issued while in super-
visor mode. SUP is assert ed when the request has supervisor privileges and is
deasserted otherwise. SUP can be used t o isolate supervisor code and data structures
from non-supervisor requests.
Tab le 2. 80960CF Pin Description — External Bu s Signals (Sheet 3 of 3)
Name Type Description
PRELIMINARY 9
A80960CF-40, -33, -25, -16
Tab l e 3. 80960CF Pin Descripti on — Pro cesso r Con tro l Signal s (Sheet 1 of 2)
Name Type Description
RESET I
A(L)
H(Z)
R(Z)
RESET causes the chip to reset. When RESET is asserted, all external signals return
to the reset state. When RESET is deassert ed, initialization begins. When the 2-x
clock mode is selected, RESET mus t remain asserted for 32 CLKIN cycles before
being deasserted to guarantee correct processor initialization. W hen the 1-x clock
mode is selected, RESET must remain asserted for 10,000 CLKIN cycles before
being deasserted to guarantee correct processo r initialization. The CLK MODE pin
selects 1-x or 2-x input clock division of the CLKIN pin.
The Hold Acknowledge bus state funct ions wh ile the chip is reset. If the bus is in the
Hold Acknowledge state when RESET is assert ed, the proces sor interna lly resets,
but maintains the Hold Acknowledge state on exter nal pins until the Hold request is
removed. If a Hold request is made while the processor is in the reset stat e, th e
processor bus grants HOLDA and enters the Hold Ack nowledge stat e.
FAIL O
S
H(Q)
R(0)
FAIL indicates failure of the self- test perfor med at initialization. When RESET is
deasserted and initialization begins, the FAIL pin is asserted. An internal self-t est is
performed as part of the initialization process. If this self-test passes, the FA IL pin is
deasserted; otherwise it rem a ins asserted. T he FAIL pin is reasserted while the
processor performs an external bus self-confidence tes t. If this self-test passes, the
processor deasserts the FAIL pin and branches to the users initialization rout ine;
otherwise the FA IL pin remains asserted. Internal self-test and the use of the F AIL pi n
can be disabled with the STEST pin.
STEST I
S(L)
H(Z)
R(Z)
SELF TEST ena b les or disables the internal self-test feature at initialization. STEST
is read on the rising edge of RESE T. When asserted, internal se lf-test and external
bus confidence tests are performed during processor initialization. When deasserted,
only the bus confidence tests are performed during initialization .
ONCE I
A(L)
H(Z)
R(Z)
ON CIRCUIT EMULATION, when asserted, causes all outputs to be floated. ONCE is
continuously sampled while RESET is low and is latched on the rising edge of
RESET. To place the proc essor in the ONC E stat e:
(1) assert RESET and ONCE (order does not m att er)
(2) wait for at least 16 CLKIN periods in 2-x mode—or 10,00 0 CLKIN
periods in 1-x mode—after VCC and CLKIN are within operating
specifications
(3) deassert RESET
(4) wait at least 32 CLK IN periods
(The processo r will now be latched in the ONCE s tate while RESET is high.)
To exit the O NCE state, bring VCC and CLKIN to operating conditions , then assert
RESET and bring ONCE high prior to deasserting RESET.
CLKIN must operate within the specified operating conditions until Step 4 completes.
CLKIN may then be changed to DC to achieve the lowest possible ONCE mode
leakage current.
ONCE can be used by emulator products or board testers to effectively make an
installed processor trans parent in the board.
10 PRELIMINARY
80960CF-40, -33, -25, -16 A
CLKIN I
A(E)
H(Z)
R(Z)
CLOCK INP UT is an input for the external clock needed to run the processor. The
externa l clock is internally divided as prescribed by the CLKMODE pin to produce
PCLK2:1.
CLKMODE I
A(L)
H(Z)
R(Z)
CLOCK MODE selects the division factor applied to the external clock input (CLKIN).
When CLKMODE is h igh, CLKIN is divided by one to create PCLK2:1 and the
processor s internal clock. When CLKMODE is low, CLKIN is divided by two to create
PCLK2:1 and the processor’s internal clock. CLKMODE should be tied high or low in
a system as the clock mode is not latched by the processor. If left unconnected, the
processor internally pu lls the CLKMODE pin low, enabling the 2-x clock mode.
PCLK2:1 O
S
H(Q)
R(Q)
PROCES SO R OUTP UT CLOCKS prov ide a timing reference for all inputs and
outputs. All input and output timings are specified in relation to PCLK2 and PCLK 1.
PCLK2 and PCLK1 are identica l signals. Two output pins are provided to allow flexi-
bility in the system’s allocation of capacitive loading on the clock. PCLK2:1 may also
be connected at the processor to form a single clock signal.
VSS GROUND connections must be connected externally to a VSS board plane.
VCC POWER connections must be connected externally to a VCC board plane.
VCCPLL VCCPLL is a separate VCC supply pin for the phase lock loop used in 1-x clock mode.
Connect ing a simple lowpass filter to VCCPLL may help reduce clock jitter (TCP) in
noisy environments. Otherwise, VCCPLL should be connected to VCC.
NC NO CONNEC T pins must not be connected in a system.
Tab le 3. 80960CF Pin Des c ription — Pro cesso r Con trol Sign als (Sheet 2 of 2)
Name Type Description
PRELIMINARY 11
A80960CF-40, -33, -25, -16
Tab le 4. 80960CF Pin Descriptio n — DMA and Interru pt Unit Con tro l Signal s
Name Type Description
DREQ3:0 I
A(L)
H(Z)
R(Z)
DMA REQ UE ST is used to request a DMA transfer. Each of the four signals
requests a transfer on a single channel. DREQ0 request s channel 0, DREQ1
requests channel 1, etc. When two or more channels are requested simultaneously,
the channel with the highest priority is serviced first. Channel priority mode is
programmable.
DACK3:0 O
S
H(1)
R(1)
DMA ACKNOW LEDG E indicates that a DMA transfer is being executed. Each of
the four signals acknowled ges a transfer for a single channel. DACK0 acknowl-
edges channel 0, DACK1 acknowledges channel 1, etc. DACK3:0 are asserted
when the request ing device of a DMA is accessed.
EOP/TC3:0 I/O
A(L)
H(Z/Q)
R(Z)
END OF PROCE SS/T ERM INA L COUNT can be programmed as either an input
(EOP3:0) or output (TC3:0), but not both. Each pin is individually programmable.
When programmed as an input, EOPx causes termination of a current DMA transfer
for the channel that corresponds to the EOPx pin. EOP0 corresponds to channel 0,
EOP1 corresponds to channel 1, etc. When a channel is configured for source
and
destination cha ining, the EOP pin for that channel causes termination of only the
current buffer transfer red and causes the next buffer to be transferr ed. EOP 3:0 are
asynchronous in puts.
When programm ed as an output, the channel’s TCx pin indicates that the channel
byte count has reached 0 and a DMA has terminat ed. TC x is driven with the same
timing as DACKx during the last DMA transfer for a buffer. If the last bus request is
executed as multiple bus accesses, TCx stays asser ted for the entire bus request.
XINT7:0 I
A(E/L)
H(Z)
R(Z)
EXTER NAL INTE RRUP T PINS cause interrupt s to be requested. These pins can
be configured in three modes:
Dedicated Mode: each pin is a dedicated external interrupt source. Dedicated
inputs can be individually programmed to be level (low) or edge (falling) activated.
Expan de d M ode: the eight pins act together as an 8-bit vectored interrupt source.
The interrupt pins in this mode are level activated. Since the interrupt pins are active
low, the vector number requested is the 1’s complement of the positive logic value
place on the port. This eliminates glue logic to interface to com binational prio rity
encoders which output negative logic.
Mixed Mode: XINT7:5 are dedicated sources and XINT4:0 act as the five mos t
significant bits of an expanded mode vector. The least significant bits are set to 010
internally.
NMI I
A(E)
H(Z)
R(Z)
NON-MAS KABL E INTER RUPT causes a non-maskable interrupt event to occur.
NMI is the highest priority interrupt recognized. NMI is an edge (falling) activated
source.
80960CF-40, -33, -25, -16 A
12 PRELIMINARY
3.3 80960CF Mechanical Data
3.3.1 80960CF PGA PINOUT
Figure 2 depicts the complete 80960CF P GA pinout
as viewed from the top side of the component (i.e.,
pins facing down). Figure 3 shows the complete
80960CF PGA pinout a s viewed from the pin-s ide of
the package (i.e., pins facing up).
Table 5 lists the 80960CF pin names and package
location in signal order; Table 6 lists the pin names
and package location in pin order. See Secti on 4. 0,
ELECTRICAL SPECIFICATIONS for specifications
and recommended connect ions.
Figure 2. 80960CF PGA Pin out— View from Top (Pins Facin g Down )
D5D7D8D9D11D12D13D15D16D17D19D21D24D25
D2D4D6VCC
D10VCC
VCC
D14VCC
D18D20D23D27D29
NCD0VCC
VSS
VSS
VSS
VSS
VSS
VSS
VCC
D22D31READY D26
D28
BTERM
HOLDA
D30HOLDBE3
VCC
ADSBE2
VSS
VCC
BE1
VSS
VCC
BLAST
VSS
BE0DEN
VSS
VCC
W/R
VSS
VCC
DT/R
A29LOCK
SUPWAIT DMA
A28
A30BREQD/C
D3
D1
ONCE
NC
NC
VCC
VSS
VSS
VSS
VSS
VSS
CLKIN
CLKMODE
VSS
BOFF
STEST
NC
NC
DREQ0
DREQ2
VCC
DACK0
VCC
VCCPLL
VCC
PCLK2
PCLK1
VCC
NC
FAIL
NC
NC
NC
DREQ1
DREQ3
DACK1
DACK2
DACK3
EOP/TC0
EOP/TC2
EOP/TC3
EOP/TC1
VSS
A2
VCC
A22A25
A20 VSS
A3A5
NMI
VCC
VSS
VSS
VSS
VSS VSS
A24A31 A26
A4VCC
A6A8A9A10A11A12A14A15A17A18
VCC
VCC
VCC
A13VCC
A16A19A21A23A27 A7 XINT6
XINT7
XINT4
XINT3
XINT5
XINT0
RESET
XINT2
XINT1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
ABCDEFGHJKLMNPQRS
F_CA002A
ABCDEFGHJKLMNPQRS
PRELIMINARY 13
A80960CF-40, -33, -25, -16
Figure 3. 80960CF PGA Pinou t — View from Botto m (Pi ns Faci ng Up)
D5 D7 D8 D9 D11 D12 D13 D15 D16 D17 D19 D21 D24 D25
D2 D4 D6 VCC D10 VCC VCC D14 VCC D18 D20 D23 D27 D29
NC D0 VCC VSS VSS VSS VSS VSS VSS VCC D22 D31 READYD26
D28 BTERM HOLDA
D30 HOLD BE3
VCC ADS BE2
VSS VCC BE1
VSS VCC BLAST
VSS BE0 DEN
VSS VCC W/R
VSS VCC DT/R
A29 LOCK
SUP WAITDMA
A28
A30 BREQ D/C
D3
D1
ONCE
NC
NC
VCC
VSS
VSS
VSS
VSS
VSS
CLKIN
CLK MODE
VSS
BOFF
STEST
NC
NC
DREQ0
DREQ2
VCC
DACK0
VCC
VCCPLL
VCC
PCLK2
PCLK1
VCC
NC
FAIL
NC
NC
NC
DREQ1
DREQ3
DACK1
DACK2
DACK3
EOP/TC0
EOP/TC2
EOP/TC3
EOP/TC1
VSS
A2
VCC
A22 A25
A20VSS
A3 A5
NMI VCC VSS VSS VSS VSS
VSS A24 A31A26
A4 VCC
A6 A8 A9 A10 A11 A12 A14 A15 A17 A18
VCC VCC VCC A13 VCC A16 A19 A21 A23 A27A7XINT6
XINT7
XINT4
XINT3
XINT5
XINT0
RESET
XINT2
XINT1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
F_CA003A
ABCDEFGHJKLMNPQRS
ABCDEFGHJKLMNPQRS
Metal Lid
14 PRELIMINARY
80960CF-40, -33, -25, -16 A
Table 5. 80960CF PGA Pinout — In Signal Order
Address Bus Data Bus Bus Co ntrol Processor Con trol I/O
Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin
A31 S15 D31 R3 BE3 S5 RESET A16 DREQ3 A7
A30 Q13 D30 Q5 BE2 S6 DREQ2 B6
A29 R14 D29 S2 BE1 S7 FAIL A2 DREQ1 A6
A28 Q14 D28 Q4 BE0 R9 DREQ0 B5
A27 S16 D27 R2 STEST B2
A26 R15 D26 Q3 W/R S10 DACK3 A10
A25 S17 D25 S1 ONCE C3 DACK2 A9
A24 Q15 D24 R1 ADS R6 DACK1 A8
A23 R16 D23 Q2 CLKIN C13 DACK0 B8
A22 R17 D22 P3 READY S3 CLKMODE C14
A21 Q16 D21 Q1 BTERM R4 PLCK1 B14 EOP/TC3 A14
A20 P15 D20 P2 PLCK2 B13 EOP/TC2 A13
A19 P16 D19 P1 WAIT S12 EOP/TC1 A12
A18 Q17 D18 N2 BLAST S8 VSS EOP/TC0 A11
A17 P17 D17 N1
Location
A16 N16 D16 M1 DT/R S11 C7, C8, C9, C10, C11,
C12, F15, G3, G15,
H3, H15, J3, J15, K3,
K15, L3, L15, M3, M15,
Q7, Q8, Q9, Q10, Q11
XINT7 C17
A15 N17 D15 L1 DEN S9 XINT6 C16
A14 M17 D14 L2 XINT5 B17
A13 L16 D13 K1 LOCK S14 XINT4 C15
A12 L17 D12 J1 XINT3 B16
A11 K17 D11 H1 VCC XINT2 A17
A10 J17 D10 H2 HOLD R5
Location
XINT1 A15
A9 H17 D 9 G1 HO LDA S4 B7, B9, B11, B12, C6,
E15, F3, F16, G2, H16,
J2, J16, K2, K16, M2,
M16, N3, N15, Q6, R7,
R8, R10, R11
XINT0 B15
A8 G17 D8 F1 BREQ R13
A7 G16 D7 E1 NMI D15
A6 F17 D6 F2 D/C S13
A5 E17 D5 D1 DMA R12
A4 E16 D4 E2 SUP Q12 VCCPLL B10
A3 D17 D3 C1 No Connect
A2 D16 D2 D2 BOFF B1
Location
D1 C2 A1, A3, A4, A5, B3, B4,
C4, C5, D3
D0 E3
PRELIMINARY 15
A80960CF-40, -33, -25, -16
Table 6. 80960CF PGA Pinout — In Pin Order
Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal
A1 NC C1 D3 F17 A6 M15 VSS R3 D31
A2 FAIL C2 D1 G1 D9 M16 VCC R4 BTERM
A3 NC C3 ONCE G2 VCC M17 A14 R5 HOLD
A4 NC C4 NC G3 VSS N1 D17 R6 ADS
A5 NC C5 NC G15 VSS N2 D18 R7 VCC
A6 DREQ1 C6 VCC G16 A7 N3 VCC R8 VCC
A7 DREQ3 C7 VSS G17 A8 N15 VCC R9 BE0
A8 DACK1 C8 VSS H1 D11 N16 A16 R10 VCC
A9 DACK2 C9 VSS H2 D10 N17 A15 R11 VCC
A10 DACK3 C10 VSS H3 VSS P1 D19 R12 DMA
A11 EOP/TC0 C11 VSS H15 VSS P2 D20 R13 BREQ
A12 EOP/TC1 C12 VSS H16 VCC P3 D22 R14 A29
A13 EOP/TC2 C13 CLKIN H17 A9 P15 A20 R15 A26
A14 EOP/TC3 C14 CLKMODE J1 D12 P16 A19 R16 A23
A15 XINT1 C15 XINT4 J2 VCC P17 A17 R17 A22
A16 RESET C16 XINT6 J3 VSS Q1 D21 S1 D25
A17 XINT2 C17 XINT7 J15 VSS Q2 D23 S2 D29
B1 BOFF D1 D5 J16 VCC Q3 D26 S3 READY
B2 STEST D2 D2 J17 A10 Q4 D28 S4 HOLDA
B3 NC D3 NC K1 D13 Q5 D30 S5 BE3
B4 NC D15 NMI K2 VCC Q6 VCC S6 BE2
B5 DREQ0 D16 A2 K3 VSS Q7 VSS S7 BE1
B6 DREQ2 D17 A3 K15 VSS Q8 VSS S8 BLAST
B7 VCC E1 D7 K16 VCC Q9 VSS S9 DEN
B8 DACK0 E2 D4 K17 A11 Q10 VSS S10 W/R
B9 VCC E3 D0 L1 D15 Q11 VSS S11 DT/R
B10 VCCPLL E15 VCC L2 D14 Q12 SUP S12 WAIT
B11 VCC E16 A4 L3 VSS Q13 A30 S13 D/C
B12 VCC E17 A5 L15 VSS Q14 A28 S14 LOCK
B13 PCLK2 F1 D8 L16 A13 Q15 A24 S15 A31
B14 PCLK1 F2 D6 L17 A12 Q16 A21 S16 A27
B15 XINT0 F3 VCC M1 D16 Q17 A18 S17 A25
B16 XINT3 F15 VSS M2 VCC R1 D24
B17 XINT5 F16 VCC M3 VSS R2 D27
16 PRELIMINARY
80960CF-40, -33, -25, -16 A
3.3.2 80960CF PQFP Pinout (80960CF-33, -25, -16 On ly)
Tables 7 and 8 list the 80960CF pin names with package location. Figure 4 shows the 80960CF PQFP pinout
as viewed from the top side. See Section 4. 0, EL EC TRICAL S PECIFICATIONS for specificat ions and recom-
mended connections.
PRELIMINARY 17
A80960CF-40, -33, -25, -16
Table 7. 80960CF PQFP Pinout — In Signal Order (80960CF-33, -25, -16 Only)
Address Bus Data Bus Bus Control Processor Con trol I/O
Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin
A31 153 D31 186 BE3 176 RESET 91 DREQ3 60
A30 152 D30 187 BE2 175 FAIL 45 DREQ2 59
A29 151 D29 188 BE1 172 STEST 46 DREQ1 58
A28 145 D28 189 BE0 170 ONCE 43 DREQ0 57
A27 144 D27 191 CLKIN 87
A26 143 D26 192 W/R 164 CLKMODE 85 DACK3 65
A25 142 D25 194 PCLK2 74 DACK2 64
A24 141 D24 195 ADS 178 PCLK1 78 DACK1 63
A23 139 D23 3 VSS DACK0 62
A22 138 D22 4 READY 182
Location
A21 137 D21 5 BTERM 184 2, 7, 16, 24, 30, 38,
39, 49, 56, 70, 75,
77, 81, 83, 88, 89,
92, 98, 105, 109,
110 , 121, 125, 131,
135, 147, 150, 161,
165, 173, 174, 185,
196
EOP/TC3 69
A20 136 D20 6 EOP/TC2 68
A19 134 D19 8 WAIT 162 EOP/TC1 67
A18 133 D18 9 BLAST 169 EOP/TC0 66
A17 132 D17 10
A16 130 D16 11 DT/R 163 XINT7 107
A15 129 D15 13 DEN 167 VCC XINT6 106
A14 128 D14 14
Location
XINT5 102
A13 124 D13 15 LOCK 156 1, 12, 20, 28, 32, 37,
44, 50, 61, 71, 79,
82, 96, 99, 103, 115,
127, 140, 148, 154,
168, 171, 180, 190
XINT4 101
A12 123 D12 17 XINT3 100
A11 122 D11 18 HOLD 181 XINT2 95
A10 120 D10 19 HOLDA 179 XINT1 94
A9 119 D9 21 BREQ 155 XINT0 93
A8 118 D8 22 VCCPLL 72
A7 117 D7 23 D/C 159 No Connect NMI 108
A6 116 D6 25 DMA 160
Location
A5 114 D5 26 SUP 158 29, 31, 41, 42, 47,
48, 51, 52, 53, 54,
55, 73, 76, 80, 84,
86, 90, 97, 104, 126,
146, 149, 157, 166,
177, 183, 193
A4 113 D4 27
A3 112 D3 33 BOFF 40
A2 111 D2 34
D1 35
D0 36
18 PRELIMINARY
80960CF-40, -33, -25, -16 A
Tab le 8. 80960CF PQ F P Pinout — In Pin Order (80960CF -33, -25, -16 Onl y)
Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal
1V
CC 34 D2 67 EOP/TC1 100 XINT3 133 A18 166 NC
2V
SS 35 D1 68 EOP/TC2 101 XINT4 134 A19 167 DEN
3 D23 36 D0 69 EOP/TC3 102 XINT5 135 VSS 168 VCC
4 D22 37 VCC 70 VSS 103 VCC 136 A20 169 BLAST
5 D21 38 VSS 71 VCC 104 NC 137 A21 170 BE0
6 D20 39 VSS 72 VCCPLL 105 VSS 138 A22 171 VCC
7V
SS 40 BOFF 73 NC 106 XINT6 139 A23 172 BE1
8 D19 41 NC 74 PCLK2 107 XINT7 140 VCC 173 VSS
9 D18 42 NC 75 VSS 108 NMI 141 A24 174 VSS
10 D17 43 ONCE 76 NC 109 VSS 142 A25 175 BE2
11 D16 44 VCC 77 VSS 110 VSS 143 A26 176 BE3
12 VCC 45 FAIL 78 PCLK1 111 A2 144 A27 177 NC
13 D15 46 STEST 79 VCC 112 A3 145 A28 178 ADS
14 D14 47 NC 80 NC 113 A4 146 NC 179 HOLDA
15 D13 48 NC 81 VSS 114 A5 147 VSS 180 VCC
16 VSS 49 VSS 82 VCC 115 VCC 148 VCC 181 HOLD
17 D12 50 VCC 83 VSS 116 A6 149 NC 182 READY
18 D11 51 NC 84 NC 117 A7 150 VSS 183 NC
19 D10 52 NC 85 CLKMODE 118 A8 151 A29 184 BTERM
20 VCC 53 NC 86 NC 119 A9 152 A30 185 VSS
21 D9 54 NC 87 CLKIN 120 A10 153 A31 186 D31
22 D8 55 NC 88 VSS 121 VSS 154 VCC 187 D30
23 D7 56 VSS 89 VSS 122 A11 155 BREQ 188 D29
24 VSS 57 DREQ0 90 NC 123 A12 156 LOCK 189 D28
25 D6 58 DREQ1 91 RESET 124 A13 157 NC 190 VCC
26 D5 59 DREQ2 92 VSS 125 VSS 158 SUP 191 D27
27 D4 60 DREQ3 93 XINT0 126 NC 159 D/C192 D26
28 VCC 61 VCC 94 XINT1 127 VCC 160 DMA 193 NC
29 NC 62 DACK0 95 XINT2 128 A14 161 VSS 194 D25
30 VSS 63 DACK1 96 VCC 129 A15 162 WAIT 195 D24
31 NC 64 DACK2 97 NC 130 A16 163 DT/R196 VSS
32 VCC 65 DACK3 98 VSS 131 VSS 164 W/R
33 D3 66 EOP/TC0 99 VCC 132 A17 165 VSS
PRELIMINARY 19
A80960CF-40, -33, -25, -16
Figure 4. 80960CF PQFP Pinout—Top View (80960CF-33, -25, -16 Only)
5098
99
147
148 196
Pin 1
49
F_CA004A
3.4 Package Thermal Specifications
The 80960CF is specified for operation when TC
(case tem perat ure) is within t he range of 0°C –100°C
for 33, 25, and 16 MHz and 0°C–85°C for 40 MHz.
TC may be measured in any environment to deter-
mine whether the 80960CF is within specified oper-
ating range. Case temperatur e should be measured
at the center of the top surface, opposite the pins.
Refer to F igu r e 5.
TA (ambient temperature) is calculated from θCA
(thermal resistance from case to ambient) using the
equation:
TA = TC – P*θCA
Table 9 shows the maximum TA allowable (without
exceeding TC) at various airflows and operating
frequencies (fPCLK).
Note that TA is greatly improved by attaching f ins or
a heatsink to the package. P (maximum power
consumption) is calculated by using the typical ICC
as tabulated in S ection 4.4, DC Speci ficatio ns and
VCC of 5 V.
20 PRELIMINARY
80960CF-40, -33, -25, -16 A
Figure 5. Measuring 80960CF PGA an d PQFP Case Temperature
Tab le 9. Maximum TA at Various Airfl ows in oC (PGA Package Only)
Airflow-ft/min (m/sec)
fPCLK
(MHz) 0
(0) 200
(1.01) 400
(2.03) 600
(3.04) 800
(4.06) 1000
(5.07)
TA with Heatsink* 40
33
25
16
20
38
50
63
40
57
65
74
58
74
79
84
60
76
81
86
66
81
85
89
68
84
87
90
TA without Heatsink * 4 0
33
25
16
0
18
34
51
15
33
46
60
30
47
57
68
40
57
65
74
50
66
72
80
52
67
74
81
NOTES:
*0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-cent er fin spacing).
Measure PQFP case temperature
at center of top surface.
Measure PGA temperature at
center of top surface
168 - Pin PGA Pin 196 Pin 1
PRELIMINARY 21
A80960CF-40, -33, -25, -16
Table 10. 80960CF PGA Package Thermal Characteristics
Thermal Resistance — °C/ Watt
Parameter
Airflow — ft./m in (m/sec)
0
(0) 200
(1.01) 400
(2.03) 600
(3.07) 800
(4.06) 1000
(5.07)
θ Junction-to-Case
(Case measured as
shown in Figure 5)
1.5 1.5 1.5 1.5 1.5 1.5
θ Case-to-Ambient
(No Heatsink) 17 14 11 9 7.1 6.6
θ Case-to-Ambient
(With Heatsink)* 13 9 5.5 5 3.9 3.4
NOTES:
1. This table app lies to 80960CF PGA plugged into socket or soldered directly to board.
2. θJA = θJC + θCA
*0.285” high unidir ectio nal hea tsink (AI al loy 6061 , 50 mil fin width, 150 mil center- to- cen ter fin spacing).
Tab le 11. 80960CF PQFP Package Thermal Characteristics
Thermal Resistance — °C /Watt
Parameter
Airflowft./min (m/sec)
0
(0) 50
(0.25) 100
(0.50) 200
(1.01) 400
(2.03) 600
(3.04) 800
(4.06)
θ Junction-to-Case (Case Mea sured
as shown in Figure 5) 5555555
θ Case-to-Ambient (No Heat sink) 19 1 8 1 7 1 5 12 10 9
NOTES:
1. This table applies to 80960CF PQFP soldered directly to board.
2. θJA = θJC + θCA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAA
AAA
AAA
AAA
θJC
θJA
θJC
80960CF-40, -33, -25, -16 A
22 PRELIMINARY
3.5 Stepping Register Information
Upon reset, register g0 contains die stepping infor-
mation (Figure 6) . The most significant b yte c ontains
ASCII 0; the upper middle byte contains an ASCII C;
the lower middle byte contains an ASCII F. The least
significant byte contains the stepping number in
ASCII. g0 retains this information until it is over-
written by the user program. Table 12 contains a
cross reference of the number in the least significant
byte of register g0 to the die stepping number.
Figure 6. Register g0
Table 12. Die Stepping Cross Reference
g0 Least Significan t Byte Die Stepp ing
01 A
02 B
03 C
04 D
05 E
ASCII 00 43 46 Stepping Numb er
DECIMAL 0 C FStepping Numb er
MSB LSB
3.6 Sources for Accessories
The following is a list of suggested sources for
80960CF accessories. This is neither an endorse-
ment nor a warranty of the performance of any of the
listed products and/or companies.
Sockets
1. 3M Textool Test and Interconnection Products
6801 River Place Blvd. Mailstop 130-3N-2 9
Austin, TX 78726-9000
(800) 328-0411
2. Augat, Inc. Interconnection Product s Group
452 John Dietsch Blvd.
Attleboro Falls, MA 02763
(508) 699-7646
3. Concept Mfg., Inc. (Decoupling Socket s)
400 Walnut St. Suite 609
Redwood City, CA 94063
(415) 365-1162 FAX: (415)265-1164
Heatsinks/Fins
1. Thermalloy, Inc.
2021 West Valley View Lane
Dallas, TX 75234
(214) 243-4321
FAX: (214) 241-4656
2. Wakefield Engineering
60 Audubon Road
Wakefield, MA 01880
(617) 245-5900
A80960CF-40, -33, -25, -16
PRELIMINARY 23
4.0 ELECTRICAL SPECIFICATIONS
4.1 Absolute Maximum Ratings
Parameter Maximum Rating
Storage Temperature................................ 65°C to +150°C
Case Temperature Under Bias..................–65°C to +110°C
Supply Voltage wrt. VSS ............................–0.5 V to + 6.5 V
Voltage on Other Pins wrt. VSS .........–0.5 V to VCC + 0.5 V
NOTICE: This document contains preliminary infor-
mation on new products in production.The specif i-
cations are subject to change without notice. Verify
with your local Intel sales office that you have the
latest datasheet before finalizing a design.
*WARNING:
Stressing the device beyond the
“Absolute Maximum Ratings” may cause perma-
nent damage. These are stress ratings only. Opera-
tion beyond the “Operating Conditions” is not
recommended and extended exposure beyond t he
“Operating Conditions” may affect device reliability.
4.2 Operating Conditions
Table 13. Operating Conditions
Symbol Parameter Min Max Units Notes
VCC Supply Voltage
80960CF-40
80960CF-33
80960CF-25
80960CF-16
4.75
4.50
4.50
4.50
5.25
5.50
5.50
5.50
V
fCLK2x Input Clock Frequency (2-x Mode )
80960CF-40
80960CF-33
80960CF-25
80960CF-16
0
0
0
0
80
66
50
32
MHz
fCLK1x Input Clock Frequency (1-x Mode )
80960CF-40
80960CF-33
80960CF-25
80960CF-16
8
8
8
8
40
33
25
16
MHz (1)
TCCase Temp Under Bias
PGA Pkg. (80960CF-40)
PGA Pkg. (80960CF-33 , -25, -16 Only)
196-Pin PQFP (80960CF-33, -25, -16 On ly)
0
0
0
85
100
100
oC
NOTES:
1. When in the 1-x input clock mode, CLKIN is an input to an internal phase-locked loop and must maintain a
minimum frequency of 8 MH z for proper processor operat ion. However, in the 1-x mode, CLKIN may still
be stopped when the processor is in a reset condition. If CLKIN is stopped, the specified RESET low time
must be provide d once CLKIN restart s and has stabilized.
80960CF-40, -33, -25, -16 A
24 PRELIMINARY
4.3 Recommended Connections
Power and ground connections must be made to
multiple VCC and VSS (GND) pins. Every 80960CF-
based circuit board should include power (VCC) and
ground (VSS) planes for power distribution. Every
VCC pin must be connected to the power plane, and
every VSS pin must be connected to the ground
plane. Pins identified as “NC” must not be
connected in the system .
Liberal decoupling capacitance should be placed
near the 80960CF. The processor can cause tran-
sient power surges when its numerous output buffers
transition, particularly when connected to large
capacitive loads.
Low inductance capacitors and interconnects are
recommended for best high frequency electrical
performance. Inductance can be reduced by short-
ening the board traces between the processor and
decoupling capacitors as much as possible. Capaci-
tors specifically designed for PGA packages will offer
the lowest possible inductance.
For reliable operation, always connect unused inputs
to an appropriate signal level. In particular, any
unused interrupt (XINT, NMI), DMA (DREQ), or
BTERM
input should be c onnect ed to VCC through a
pull-up resistor. Pull-up resistors should be in the in
the range of 20 Kfor each pin tied high. If READY
or HOLD are not used, the unused input should be
connected to ground. N.C. pins must always
remain unconnected. For additional information
refer to t he
i960
®
Cx Microproce ssor User s M anual
(270710).
4.4 DC Specifications
Tab le 14. DC Characteri stics (Sheet 1 of 2)
(80960CF-40, 33, -25, -16 under the conditions described in Secti on 4.2, Op erati ng Condition s.)
Symbol Parameter Min Max Units Notes
VIL Input Low Voltage for all pins except RESET – 0.3 +0.8 V
VIH Input High Voltage for all pins except RESET 2.0 VCC + 0.3 V
VOL Output Low Voltage 0.45 V IOL = 5 mA
VOH Output High Voltage IOH = –1 mA
IOH = – 200 µA2.4
VCC – 0.5 V
V
VILR Input Low Voltage for RESET – 0.3 1 .5 V
VIHR Input High Voltage for RESET 3.5 VCC + 0.3 V
NOTES:
1. No pullup or pulldown.
2. These pins have internal pullup resistors.
3. These pins have internal pulldown resistors.
4. Measured at worst case frequency, VCC and temperature, with device operating and outputs loaded to the test conditions
described in Section 4.5.1, AC TEST CONDITIONS.
5. ICC Typical is not tested.
6. Output Capacitance is the capacitive load of a floating output.
7. CLKMODE pin has a pulldown resistor only when ONCE pin is deasserted.
PRELIMINARY 25
A80960CF-40, -33, -25, -16
ILI1 Input Leakage Current for each pin
except
:
BTERM, ONCE, DREQ3:0 , STE ST,
EOP3:0/TC3:0, NMI, XINT7:0, BO F F, READY,
HOLD, CLKMO DE ±15 µA 0 VIN VCC
(1)
ILI2 Input Leakage Current for:
BTERM, ONCE, DREQ3: 0, S T E ST,
EOP3:0/TC3:0, NMI, XINT7:0, BO F F 0 – 300 µA VIN = 0.45 V (2)
ILI3 Input Leakage Current for:
READY, HOLD, CLKMODE 0 500 µA VIN = 2.4 V (3,7)
ILO Output Leakage Current ±15 µA 0.45 VOUT
VCC
ICC Supply Current (80960CF-40, 33):
ICC Max
ICCTyp 1150
1000 mA
mA (4)
(5)
ICC Supply Current (80960CF-25):
ICC Max
ICCTyp 950
775 mA
mA (4)
(5)
ICC Supply Current (80960CF-16):
ICC Max
ICCTyp 750
575
mA (4)
(5)
IONCE ONCE-mode Supply Current
80960CF-40
80960CF-33, -25, -16 225
150
mA
CIN Input Capacitance for: CLKIN, RESET, ONCE,
READY, HOLD, DREQ3:0, BOFF, XINT7:0, NMI,
BTERM, CLKMODE
012pFF
C
= 1 MHz
COUT Output Capacitance of each output pin 12 pF FC = 1 MHz (6)
CI/O I /O Pin Capacitance 12 pF FC = 1 MHz
Tab le 14. DC Characteri stics (Sheet 2 of 2)
(80960CF-40, 33, -25, -16 under the conditions described in Secti on 4.2, Op erati ng Condition s.)
Symbol Parameter Min Max Units Notes
NOTES:
1. No pullup or pulldown.
2. These pins have internal pullup resistors.
3. These pins have internal pulldown resistors.
4. Measured at worst case frequency, VCC and temperature, with device operating and outputs loaded to the test conditions
described in Section 4.5.1, AC TEST CONDITIONS.
5. ICC Typical is not tested.
6. Output Capacitance is the capacitive load of a floating output.
7. CLKMODE pin has a pulldown resistor only when ONCE pin is deasserted.
26 PRELIMINARY
80960CF-40, -33, -25, -16 A
4.5 AC Specifications
Tab le 15. 809 60CF AC Ch ara cterist ics (40 MHz) (Sheet 1 of 3)
(80960CF-40 only, per the conditions in 4.2 Operati n g Condi tion s and 4.5.1 AC TE ST CONDIT ION S .)
Symbol Parameter Min Max Units Notes
Input Clo ck (1,9 )
TFCLKIN Frequency 0 80 MHz
TCCLKIN Period In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x)25
12.5 125
ns
ns (11)
TCS CLKIN Period Stability In 1-x Mode (fCLK1x) ±0.1% (12)
TCH CLKIN High Time In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x)5
562.5
ns
ns (11)
TCL CLKIN Low Time In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x)5
562.5
ns
ns (11)
TCR CLKIN Rise Time 0 6 ns
TCF CLKIN Fall Time 0 6 ns
Output Clocks (1,8)
TCP CLKIN to PCLK2: 1 Delay In 1-x Mod e (fCLK1x)
In 2-x Mode (fCLK2x)– 2
22
25 ns
ns (3,12)
(3)
T PCLK2:1 Period In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x)TC
2TC
ns
ns (12)
(3)
TPH PCLK2:1 High Time (T/2) – 2 T/2 ns (12)
TPL PCLK2:1 Low Time (T/2) – 2 T/2 ns (12)
TPR PCLK2:1 Rise Time 1 4 ns (3)
TPF PCLK2:1 Fall Time 1 4 ns (3)
Synchro n ous O utp u ts (8)
NOTES:
See Table 18 for all notes related to AC specificatio ns.
PRELIMINARY 27
A80960CF-40, -33, -25, -16
TOH
TOV
Output Valid Delay, Output Hold
TOH1, TOV1 A31:2
TOH2, TOV2 BE3:0
TOH3, TOV3 ADS
TOH4, TOV4 W/R
TOH5, TOV5 D/C, SUP, DMA
TOH6, TOV6 BLAST, WAIT
TOH7, TOV7 DEN
TOH8, TOV8 HOLDA, BREQ
TOH9, TOV9 LOCK
TOH10, TOV10 DACK3:0
TOH11, TOV11 D31:0
TOH12, TOV12 DT/R
TOH13, TOV13 FAIL
TOH14, TOV14 EOP3:0/TC3:0
3
3
6
3
4
5
3
4
4
4
3
T/2 + 3
2
3
14
16
16
16
16
16
16
16
16
16
16
T/2 + 14
14
16
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
(6,10)
(6,10)
TOF Output Float for all outputs 3 22 ns (6)
Synchron o us I npu ts (1,9, 10)
TIS Input Setup
TIS1 D31:0
TIS2 BOFF
TIS3 BTERM/READY
TIS4 HOLD
3
15
7
5
ns
ns
ns
ns
TIH Input Hold
TIH1 D31:0
TIH2 BOFF
TIH3 BTERM/READY
TIH4 HOLD
5
5
2
3
ns
ns
ns
ns
Tab le 15. 80960CF AC Characteristics (40 MHz) (Sheet 2 of 3)
(80960CF-40 only, per the conditions in 4.2 Operating Conditi ons and 4.5.1 AC TE ST CONDIT IO NS .)
Symbol Parameter Min Max Units Notes
NOTES:
See Table 18 for all notes related to AC specifications.
28 PRELIMINARY
80960CF-40, -33, -25, -16 A
Relative Output Timings (1,2,3,8)
TAVSH1 A31:2 Valid to ADS Rising T – 4 T + 4 ns
TAVSH2 BE3:0, W/R , SUP, D/C, DMA, DACK3:0 Valid to ADS
Rising T – 6 T + 6 ns
TAVEL1 A31:2 Va lid to DEN Falling T – 4 T + 4 ns
TAVEL2 BE3:0, W/R, SUP, INST,DMA, DACK3:0 Valid to DEN
Falling T – 6 T + 6 ns
TNLQV WAIT Falling to Output Data Valid ± 6 ns
TDVNH Output Data Valid to WAIT Rising N*T – 6 N*T + 6 ns (4)
TNLNH WAIT Falling to WAIT Rising N*T ± 4 ns (4)
TNHQX Out put Data Hold aft er WAIT Rising (N+1)*T–8 (N+1)*T+6 ns (5)
TEHTV DT/R Hold after DEN High T/2 – 7 ns (6)
TTVEL DT/R Valid to DEN Falling T/2 – 4 ns
Relative Input Timings (1,2,3)
TIS5 RESET Input Setup (2- x Clock Mode) 6 ns (13)
TIH5 RESET Input Hold (2-x Clock Mode) 5 ns ( 13)
TIS6 DREQ3:0 Input Setup 12 ns (7)
TIH6 DREQ3:0 Input Ho ld 7 ns (7)
TIS7 XINT7:0, NMI Input Setup 7 ns (15)
TIH7 XINT7:0, NMI Input Hold 3 ns (15)
TIS8 RESET Input Setup (1- x Clock Mode) 3 ns (14)
TIH8 RESET Input Hold (1-x Clock Mode) T/4 + 1 ns (14)
Tab le 15. 809 60CF AC Ch ara cterist ics (40 MHz) (Sheet 3 of 3)
(80960CF-40 only, per the conditions in 4.2 Operati n g Condi tion s and 4.5.1 AC TE ST CONDIT ION S .)
Symbol Parameter Min Max Units Notes
NOTES:
See Table 18 for all notes related to AC specificatio ns.
PRELIMINARY 29
A80960CF-40, -33, -25, -16
Tab le 16. 809 60CF AC Ch ara cterist ics (33 MHz) (Sheet 1 of 3)
(80960CF-33 only, per the conditions in 4.2 Operating Conditi ons and 4.5.1 AC TE ST CONDIT IO NS .)
Symbol Parameter Min Max Units Notes
Input Clock (1,9)
TFCLKIN Frequency 0 66.66 MHz
TCCLKIN Period In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x)30
15 125
ns
ns (11)
TCS CLKIN Period Stability In 1-x Mode (fCLK1x) ±0.1% (12)
TCH CLKIN High Time In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x)5
562.5
ns
ns (11)
TCL CLKIN Low Time In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x)5
562.5
ns
ns (11)
TCR CLKIN Rise Time 0 6 ns
TCF CLKIN Fall Time 0 6 ns
Output Clocks (1,8)
TCP CLKIN to PCLK2:1 Delay In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x)– 2
22
25 ns
ns (3,12)
(3)
T PCLK2:1 Period In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x)TC
2TC ns
ns (12)
(3)
TPH PCLK2:1 High Time (T/2) – 2 T/2 ns (12)
TPL PCLK2:1 Low Time (T/2) – 2 T/2 ns (12)
TPR PCLK2:1 Rise Time 1 4 ns (3)
TPF PCLK2:1 Fall Time 1 4 ns (3)
NOTES:
See Table 18 for all notes related to AC specifications.
30 PRELIMINARY
80960CF-40, -33, -25, -16 A
Synchro n ous O utp u ts (8)
TOH
TOV Output Valid De lay, Output Hold
TOH1, TOV1 A31:2
TOH2, TOV2 BE3:0
TOH3, TOV3 ADS
TOH4, TOV4 W/R
TOH5, TOV5 D/C, SUP, DMA
TOH6, TOV6 BLAST, WAIT
TOH7, TOV7 DEN
TOH8, TOV8 HOLDA, BREQ
TOH9, TOV9 LOCK
TOH10, TOV10 DACK3:0
TOH11, TOV11 D31:0
TOH12, TOV12 DT/R
TOH13, TOV13 FAIL
TOH14, TOV14 EOP3:0/TC3:0
3
3
6
3
4
5
3
4
4
4
3
T/2 + 3
2
3
14
16
18
18
16
16
16
16
16
18
16
T/2 + 14
14
18
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
(6,10)
(6,10)
TOF Output Float for all outputs 3 22 ns (6)
Synchro n ous Inp uts (1,9,10 )
TIS Input Setu p
TIS1 D31:0
TIS2 BOFF
TIS3 BTERM/READY
TIS4 HOLD
3
17
7
7
ns
ns
ns
ns
TIH Input Hold
TIH1 D31:0
TIH2 BOFF
TIH3 BTERM/READY
TIH4 HOLD
5
5
2
3
ns
ns
ns
ns
Relative Output Timings (1,2,3,8)
TAVSH1 A31:2 Valid to ADS Rising T – 4 T + 4 ns
TAVSH2 BE3:0, W/R, SUP, D/C, DMA, DACK3:0 Valid to ADS
Rising T – 6 T + 6 ns
TAVEL1 A31:2 Valid to DEN Falling T – 4 T + 4 ns
TAVEL2 BE3:0, W/R, SUP, INST,DMA, DACK3:0 Valid to DEN
Falling T – 6 T + 6 ns
TNLQV WAIT Falling to Output Data Valid ± 6 ns
Table 16. 80960CF AC Characteristics (33 MHz) (Sheet 2 of 3)
(80960CF-33 only, per the conditions in 4.2 Operati n g Condi tion s and 4.5.1 AC TE ST CONDIT ION S .)
Symbol Parameter Min Max Units Notes
NOTES:
See Table 18 for all notes related to AC specificatio ns.
PRELIMINARY 31
A80960CF-40, -33, -25, -16
TDVNH Output Data Valid to WAIT Rising N*T – 6 N*T + 6 ns (4)
TNLNH WAIT Falling t o WAIT Rising N*T ± 4 ns (4)
TNHQX Output Data Hold after WAIT Rising (N+1)*T–8 (N+1)*T+6 ns (5)
TEHTV DT/R Hold after DEN High T/2 – 7 ns (6)
TTVEL DT/R Valid to DEN Falling T/2 – 4 ns
Relative Input Timings (1,2,3)
TIS5 RESET Input Set up (2-x C lock Mode) 6 ns (13)
TIH5 RESET Input Hold (2-x Clock Mode) 5 ns (13)
TIS6 DREQ3:0 Input Setu p 12 ns (7)
TIH6 DREQ3:0 Input Hold 7 ns (7)
TIS7 XINT7:0, NMI Input Setup 7 ns (15)
TIH7 XINT7:0, NMI Input Hold 3 ns (15)
TIS8 RESET Input Set up (1-x C lock Mode) 3 ns (14)
TIH8 RESET Input Hold (1-x Clock Mode) T/4 + 1 ns (14)
Tab le 16. 809 60CF AC Ch ara cterist ics (33 MHz) (Sheet 3 of 3)
(80960CF-33 only, per the conditions in 4.2 Operating Conditi ons and 4.5.1 AC TE ST CONDIT IO NS .)
Symbol Parameter Min Max Units Notes
NOTES:
See Table 18 for all notes related to AC specifications.
32 PRELIMINARY
80960CF-40, -33, -25, -16 A
Table 17. 80960CF AC Characteristics (25 MHz) (Sheet 1 of 2)
(80960CF-25 only, per the conditions in 4.2 Operati n g Condi tion s and 4.5.1 AC TE ST CONDIT ION S .)
Symbol Parameter Min Max Unit Notes
Input Clo ck (1,9 )
TFCLKIN Frequency 0 50 MHz
TCCLKIN Period In 1-x Mode (f CLK1x)
In 2-x Mode (f CLK2x)40
20 125
ns
ns (11)
TCS CLKIN Period Stability In 1-x Mode (f CLK1x) ±0.1% (12)
TCH CLKIN High Time In 1-x Mode (f CLK1x)
In 2-x Mode (f CLK2x)8
862.5
ns
ns (11)
TCL CLKIN Low Time In 1-x Mode (f CLK1x)
In 2-x Mode (f CLK2x)8
862.5
ns
ns (11)
TCR CLKIN Rise Time 0 6 ns
TCF CLKIN Fall Time 0 6 ns
Output Clocks (1,8)
TCP CLKIN to PCLK2: 1 Delay In 1-x Mode (f CLK1x)
In 2-x Mode (f CLK2x)– 2
22
25 ns
ns (3,12)
(3)
T PCLK2:1 Period In 1-x Mode (f CLK1x)
In 2-x Mode (f CLK2x)TC
2TCns
ns (12)
(3)
TPH PCLK2:1 High Time (T/2) – 3 T/2 ns (12)
TPL PCLK2:1 Low Time (T /2) – 3 T/2 ns (12)
TPR PCLK2:1 Rise Time 1 4 ns (3)
TPF PCLK2:1 Fall Time 1 4 ns (3)
Synchro n ous O utp u ts (8)
TOH
TOV Output Valid Delay, Output Hold
TOH1, TOV1 A31:2
TOH2, TOV2 BE3:0
TOH3, TOV3 ADS
TOH4, TOV4 W/R
TOH5, TOV5 D/C, SUP, DMA
TOH6, TOV6 BLAST, WAIT
TOH7, TOV7 DEN
TOH8, TOV8 HO LDA, BREQ
TOH9, TOV9 LOCK
TOH10, TOV10 DACK3:0
TOH11, TOV11 D31:0
TOH12, T OV12 DT/R
TOH13, TOV13 FAIL
TOH14, TOV14 EOP3:0/TC3:0
3
3
6
3
4
5
3
4
4
4
3
T/2 + 3
2
3
16
18
20
20
18
18
18
18
18
20
18
T/2 + 16
16
20
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
(6,10)
(6,10)
TOF Output Float for all outputs 3 22 ns (6)
NOTES: See Table 18 for all notes related to AC specificat ions.
PRELIMINARY 33
A80960CF-40, -33, -25, -16
Synchron o us I npu ts (1,9, 10)
TIS Input Setup
TIS1 D31:0
TIS2 BOFF
TIS3 BTERM/READY
TIS4 HOLD
5
19
9
9
ns
ns
ns
ns
TIH Input Hold
TIH1 D31:0
TIH2 BOFF
TIH3 BTERM/READY
TIH4 HOLD
5
7
2
5
ns
ns
ns
ns
Relative Outpu t Timings (1,2,3,8)
TAVSH1 A31:2 Valid to ADS Rising T – 4 T + 4 ns
TAVSH2 BE3:0, W / R, SUP, D/C,
DMA, DACK3:0 Valid to ADS Rising T – 6 T + 6 ns
TAVEL1 A31:2 Valid to DEN Falling T – 4 T + 4 ns
TAVEL2 BE3:0, W/R, SUP, INST,
DMA, DACK3:0 Valid to DEN Falling T – 6 T + 6 ns
TNLQV WAIT Falling to Output Data Valid ± 6 n s
TDVNH Output Data Valid to WAIT R isin g N*T – F N*T + 6 ns (4)
TNLNH WAIT Falling t o WAIT Rising N*T ± 4 ns (4)
TNHQX Output Data Hold after WAIT Rising (N+1)*T–
8(N+1)*T+6 ns (5)
TEHTV DT/R Ho ld after D EN High T/2 – 7 ns (6)
TTVEL DT/R Valid to DEN Falling T/2 – 4 ns
Relative Input Timings (1,2,3)
TIS5 RESET Input Setup (2-x Clock Mode) 8 ns (13)
TIH5 RESET Input Hold (2-x Clock Mode) 7 ns (13)
TIS6 DREQ3:0 Input Setup 14 ns (7)
TIH6 DREQ3:0 Input Hold 9 ns (7)
TIS7 XINT7:0, NM I Input Setup 9 ns (15)
TIH7 XINT7:0, NM I Input Hold 5 ns (15)
TIS8 RESET Input Setup (1-x Clock Mode) 3 ns (14)
TIH8 RESET Input Hold (1-x Clock Mode) T/4 + 1 ns (14)
Tab le 17. 80960CF AC Characteristi cs (25 MHz) (Sheet 2 of 2)
(80960CF-25 only, per the conditions in 4.2 Operating Conditi ons and 4.5.1 AC TE ST CONDIT IO NS .)
Symbol Parameter Min Max Unit Notes
NOTES: See Table 18 for all notes related to AC specifications.
34 PRELIMINARY
80960CF-40, -33, -25, -16 A
Table 18. 80960CF AC Characteristics (16 MHz) (Sheet 1 of 3)
(80960CF-16 only, per the conditions in 4.2 Operating Conditions and 4.5.1 AC TE ST COND ITIONS.)
Symbol Parameter Min Max Units Notes
Input Clo ck (1,9 )
TFCLKIN Frequency 0 32 MHz
TCCLKIN Period In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x)62.5
31.25 125
ns
ns (11)
TCS CLKIN Period Stability I n 1-x Mode (fCLK1x) ±0.1% (12)
TCH CLKIN High Time In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x)10
10 62.5
ns
ns (11)
TCL CLKIN Low Time In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x)10
10 62.5
ns
ns (11)
TCR CLKIN Rise Time 0 6 ns
TCF CLKIN Fall Time 0 6 ns
Output Clocks (1,8)
TCP CLKIN to PCLK2:1 Delay In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x)– 2
22
25 ns
ns (3,12)
(3)
T PCLK2:1 Period In 1-x Mode (fCLK1x)
In 2-x Mode (fCLK2x)TC
2TC ns
ns (12)
(3)
TPH PCLK2:1 High Tim e ( T/2) – 4 T/2 ns (12)
TPL PCLK2:1 Low Time (T/2) – 4 T /2 ns (12)
TPR PCLK2:1 Rise Time 1 4 ns (3)
TPF PCLK2:1 Fall Time 1 4 ns (3)
Synchro n ous O utp u ts (8)
TOH
TOV Output Valid Delay, Output Hold
TOH1, TOV1 A31:2
TOH2, TOV2 BE3:0
TOH3, TOV3 ADS
TOH4, TOV4 W/R
TOH5, TOV5 D/C, SUP, DMA
TOH6, TOV6 BLAST, WAIT
TOH7, TOV7 DEN
TOH8, TOV8 HOLDA, BREQ
TOH9, TOV9 LOCK
TOH10, TOV10 DACK3:0
TOH11, TOV11 D31:0
TOH12, TOV12 DT/R
TOH13, TOV13 FAIL
TOH14, TOV14 EOP3:0/TC3:0
3
3
6
3
4
5
3
4
4
4
3
T/2 + 3
2
3
18
20
22
22
20
20
20
20
20
22
20
T/2 + 18
18
22
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
(6,10)
(6,10)
TOF Output Float for all outputs 3 22 ns (6)
PRELIMINARY 35
A80960CF-40, -33, -25, -16
Synchron o us I npu ts (1,9, 10)
TIS Input Setup
TIS1 D31:0
TIS2 BOFF
TIS3 BTERM/READY
TIS4 HOLD
5
21
9
9
ns
ns
ns
ns
TIH Input Hold
TIH1 D31:0
TIH2 BOFF
TIH3 BTERM/READY
TIH4 HOLD
5
7
2
5
ns
ns
ns
ns
Relative Outpu t Timings (1,2,3,8)
TAVSH1 A 31:2 Valid to ADS Rising T – 4 T + 4 ns
TAVSH2 BE3:0, W / R , SUP, D/C,
DMA, DACK3:0 Valid to ADS Rising T – 6 T + 6 ns
TAVEL1 A31:2 Valid to DEN Falling T – 6 T + 6 ns
TAVEL2 BE3:0, W/R , SUP, INST,
DMA, DACK3:0 Valid to DEN Falling T – 6 T + 6 ns
TNLQV WAIT Falling to Output Data Valid ± 6 ns
TDVNH Outp ut Data Valid to WAIT Rising N*T – 6 N*T + 6 ns (4)
TNLNH WAIT Falling to WAIT Rising N*T ± 4 ns (4)
TNHQX Output Data Hold after WAIT Rising (N+1)*T–8 (N+1)*T+6 ns (5)
TEHTV DT/R Hold after DEN High T/2 – 7 ns (6)
TTVEL DT/R Valid to DEN Falling T/2 – 4 ns
Relative Input Timings (1,2,3)
TIS5 RESET Input Setu p (2- x Clock Mode) 10 ns (13)
TIH5 RESET Input Ho ld (2-x Clock Mode) 9 ns (13)
TIS6 DREQ3:0 Input Setup 16 ns (7)
TIH6 DREQ3:0 Input Ho ld 11 ns (7)
TIS7 XINT7:0, NMI Input Set up 9 ns (15)
Table 18. 80960CF AC Characteristi cs (16 MHz) (Sheet 2 of 3)
(80960CF-16 only, per the conditions in 4.2 Operating Conditions and 4.5.1 AC TES T CONDIT I ON S.)
Symbol Parameter Min Max Units Notes
36 PRELIMINARY
80960CF-40, -33, -25, -16 A
4.5.1 AC TEST CONDITIONS
The AC Specific ations in Section 4.5 are tested wit h the 50 pF load shown in Figure 7. Figure 16 shows how
timings vary with load capacitance.
Specifications are measured at the 1.5V crossing point, unless otherwise indicated. Input waveforms are
assumed to have a rise and fall time of 2 ns from 0.8V to 2.0V . See Section 4.5.2, AC TIMING W AVEFORMS
for AC s pecification definitions, test points and illust rations.
TIH7 XINT7:0, NMI Input Hold 5 ns (15)
TIS8 RESET Input Setup (1-x Clock Mode) 3 ns (14)
TIH8 RESET Input Hold (1-x Clock Mode) T/4 + 1 ns (14)
NOTES:
1. See Section 4.5.2, AC TIMING WAVEFORMS for waveforms and definitions.
2. See Figure 16 for capa citive der atin g infor mation for output delays and hold times.
3. See Figure 17 for capa citive der atin g infor mation for rise and fall time s.
4. Where N is the number of NRAD, NRDD, NWAD or NWDD wait states that are programmed in the Bus Controller Region
Table. WAIT never goes active when there are no wait states in an access.
5. N = Number of wait states inserted with READY.
6. Output Data and/or DT/R may be driven indefinitely following a cycle if there is no subsequent bus activity.
7. Since asynchronous inputs are synchro nized intern ally by the 8096 0CF , they have no requir ed setu p or hold time s to be
recognized and for proper operation. However, to guarantee recognition of the input at a particular edge of PCLK2:1, the
setup times shown must be met. Asynchronous inputs must be active for at least two consecutive PCLK2:1 rising edges
to be seen by the processor.
8. These specifications are guaranteed by the processor .
9. The se specif ications must be met by the system for proper opera tion of the proce ssor.
10.This timing is dependent upon the loading of PCLK2:1. Use the derating curves of Section 4.5.3, DERA TING CURVES to
adjust the timing for PCLK2:1 loading.
11.In the 1-x input clock mode, the maximum input clock period is limited to 125 ns while the processor is operating. When
the pro cesso r is in reset, the input clock may stop even in 1-x mode.
12.When in the 1-x input clock mode, these specifications assume a stable input clock with a period variation of less than ±
0.1% between adjacent cycles.
13.In 2-x clock mode, RESET is an asynchronous input which has no required setup and hold time for proper operation.
Howeve r, to guarantee the device exits res et synchr on ized to a particu lar clock edg e, the RESET pin must meet setup
and hold times to the falling edge of the CLKIN. (See Figure 23.)
14.In 1-x clock mode, RESET is an asynchronous input which has no required setup and hold time for proper operation.
Howeve r, to guarantee the device exits res et synchr on ized to a particu lar clock edg e, the RESET pin must meet setup
and hold times to the rising edge of the CLKIN. (See Figure 24.)
15.The interrupt pins are synchronized internally by the 80960CF. They have no required setup or hold times for proper
operation. These pins are sampled by the interrupt controller every other clock and must be active for at least three con-
secutive PCLK2:1 rising edges when asserting them asynchronously. To guarantee recognition at a particular clock edge,
the setu p and hold times shown mu st be met for two consecutive PCLK2:1 rising edg es.
Table 18. 80960CF AC Characteristics (16 MHz) (Sheet 3 of 3)
(80960CF-16 only, per the conditions in 4.2 Operating Conditions and 4.5.1 AC TE ST COND ITIONS.)
Symbol Parameter Min Max Units Notes
PRELIMINARY 37
A80960CF-40, -33, -25, -16
Figure 7. AC Test Load
4.5.2 AC TIMING WAVEFORMS
Figure 8. Input and Output Clocks Waveform
Figure 9. CLKI N Waveform
Output Pin
CL = 50 pF for all signals
CL
F_CX008A
PCLK2:1 2.4 V
1.5 V
1.5 V 1.5 V
0.45 V
TCP
TPH TPL
TPR TPF
T
F_CX009A
CLKIN
2.0 V
1.5 V
0.8 V
TCF
TCH TCL
TC
TCR
F_CX010A
38 PRELIMINARY
80960CF-40, -33, -25, -16 A
Figure 10. Outpu t Delay and Flo at Waveform
Figure 11. Input Setup and Hold Waveform
PCLK2:1
Outputs
1.5 V
1.5 V
TOV
Min Max
TOH
Min Max
TOF
1.5 V 1.5 V
1.5 V
1.5 V
Outputs
F_CX011A
NOTES:
1. TOV TOH - OUTPUT DELAY - Maximum output delay is referred to as Output Valid Delay (TOV); minimum
output delay is referred to as Ou tput Hold (TOH).
2. TOF - OUTPUT FLOAT DELAY - Output float condition occurs when the maximum output current becomes less that ILO
in magnitude.
PCLK2:1
Inputs:
1.5 V1.5 V1.5 V
Valid
TIS TIH
(READY, HOLD, BTERM,
BOFF, DREQ3:0,
D31:0 on reads)
F_CX012A
Min Max
NOTES:
1. TIS TIH - INPUT SETUP AND HOLD - The input setup and hold requirements spec ify the sampling win-
PRELIMINARY 39
A80960CF-40, -33, -25, -16
Figure 12. NMI, XINT7:0 Inpu t Setup and Hol d Waveform
Figure 13. Hold Ackno w l edg e Timing s
PCLK2:1 1.5 V1.5 V1.5 V
Valid
TIS TIH
NMI, XINT7:0
Min Min
F_CX013A
1.5 V
1.5 V
PCLK2:1 1.5 V
1.5 V 1.5 V
Outputs:
A31:2, D31:0, BE3:0,
ADS, BLAST, WAIT, W/R,
DT/R, DEN, LOCK,
D/C, SUP, DMA
Min Max Min Max
Valid 1.5 V Valid
TOF TOV
HOLD
TIS
TIH
1.5 V 1.5 V
TIH TIS
HOLDA
TOV
Min
Min Min
Min
MaxMin MaxMin
F_CX014A
1.5 V 1.5 V 1.5 V
NOTES:
1. TOV TOH - OUTPUT DELAY - Maximum output delay is referred to as Output Valid Delay (TOV); minimum
output delay is referred to as Output Hold (TOH).
2. TOF - OUTPUT FLOAT DELAY - Output float condition occurs when the maximum output current becomes less that ILO in
magnitude.
3. TIS TIH - INPUT SETUP AND HOLD - The input setup and hold requirements specify the sampling window during which
synchronous inputs must be stable for correct processor operation.
1.5 V
TOV
40 PRELIMINARY
80960CF-40, -33, -25, -16 A
Figure 14. Bus Backoff (BO FF) Timings
Figure 15. Relative Timings Waveforms
PCLK2:1 1.5 V
1.5 V 1.5 V
Outputs:
A31:2, D31: 0, BE3:0,
ADS, BLAST, WAIT, W/R,
DT/R, DEN, LOCK,
D/C, SUP, DMA
Min
Max
Min
Max
Valid 1.5 V Valid
TOF TOV
BOFF
TIS
TIH
1.5 V 1.5 V 1.5 V
TIH
TIS
F_CX015A
1.5 V
1.5 V
PCLK2:1 1.5 V
1.5 V 1.5 V
1.5 V
1.5 V
1.5 V 1.5 V
1.5 V
1.5 V
1.5 V
1.5 V
1.5 V
1.5 V
TAVSH
TDVNH TNHQX
TNLNH
TAVEL
TVEL
TEHTV
TNLQV
ADS
A31:2, BE3:0,
W/R, LOCK,
SUP, D/C, DMA
D31:0
WAIT
DT/R
DEN
D31:0 F_CX016A
1.5 V
In VIH
VIL
Out
PRELIMINARY 41
A80960CF-40, -33, -25, -16
4.5.3 DERATING CURVES
Figure 16. Outp ut Delay or Hol d vs. Load Cap acit ance
Figure 17. Rise and Fall Time Derating at Highest Operati n g Temperature and Minimum VCC
50 100 150
CL (pF)
nom + 10
nom + 5
nom
All outputs except: LOCK,
EOP3:0/TC3:0, FAIL
F_CX017A
DMA, SUP, BREQ, DACK3:0,
Note: PCLK Load = 50pF
LOCK, DMA, SUP, BR EQ ,
DACK3:0, EOP3:0/TC3:0, FAIL
50 100 150
CL (pF)
10
8
6
4
2
50 100 150
CL (pF)
10
8
6
4
2
a) All outputs except: LOCK, DMA, SUP, HOLDA, BREQ
DACK3:0, EOP3:0/TC3:0, FAIL b) LOCK, DMA, SUP, HOLDA, BREQ, DACK3:0,
EOP3:0/TC3:0, FAIL
0.8 V to 2.0 V
0.8V to 2.0V
F_CX019A
42 PRELIMINARY
80960CF-40, -33, -25, -16 A
Figure 18. ICC vs. Frequen cy an d Temperature—80960CF -33, -25, -16
Figure 19. ICC vs. Frequency and Temperature—80960CF-40
900
0033
TC = 100° C
TC = 0° C
fPCLK (MHz)
ICC - ICC under test con dition s F_CX020A
1100
0040
fPCLK (MHz)
ICC - ICC under test conditions
F_CX020A
TC =
T
C
= 85° C
5.0 RESET, BACKOFF AND HOLD
ACKNOWLEDGE
Ta ble 19 lists the condition of each processor out put
pin while RESET is asserted (low). Table 20 lists the
condition of each processor output pin while HOLDA
is asserted (high).
In Table 20, with regard to bus output pin state only,
the Hold Acknowledge state takes precedence over
the reset state. Although asserting the RESET pin
internally resets the processor, the processor’s bus
output pins do not enter the reset state if Hold
Acknow ledge has been granted t o a prev ious HOLD
request (HOLDA is active). Furthermore, the
processor grants new HOLD requests and enters the
Hold Acknowledge state even while in reset.
For example, if HOLD is asserted while HOLDA is
inactive and the processor is in the reset state, the
processors bus pins enter the Hold Acknowledge
state and HOLDA is granted. The processor is not
able to perform memory accesses until the HOLD
request is removed, even if the RESET pin is brought
high. This operation is provided to simplify boot-up
synchronization among multiple processors sharing
the same bus.
A80960CF-40, -33, -25, -16
PRELIMINARY 43
Tab le 19. Reset Condition s
Pins State During Reset
(HOLDA inactive)
A31:2 Floating
D31:0 Floating
BE3:0 Driven high (Inact ive)
W/R Driven low (Read)
ADS Driven high (Inactive)
WAIT Driven high (Inactive)
BLAST Driven low (Active)
DT/R Driven low (Receive)
DEN Driven high (Inactive)
LOCK Driven high (Inact ive)
BREQ Driven low (Inactive)
D/C Floating
DMA Floating
SUP Floating
FAIL Driven low (Active)
DACK3:0 Driven high (Inactive)
EOP3:0/TC3:0 Floating (Set to input mode)
Tab le 20. Hold Ackno w led ge and Backoff
Conditions
Pins State Durin g HOL DA
A31:2 Floating
D31:0 Floating
BE3:0 Floating
W/R Floating
ADS Floating
WAIT Floating
BLAST Floating
DT/R Floating
DEN Floating
LOCK Floating
BREQ Driven (High or low)
D/C Floating
DMA Floating
SUP Floating
FAIL Driven high (Inactive)
DACK3:0 Driven h igh (Inactive)
EOP3:0/TC3:0 Driven (If output )
44 PRELIMINARY
80960CF-40, -33, -25, -16 A
6.0 BUS WAVEFORMS
Figure 20. Cold Reset Wavefor m
PRELIMINARY 45
A80960CF-40, -33, -25, -16
Figure 21. Warm Reset Waveform
46 PRELIMINARY
80960CF-40, -33, -25, -16 A
Figure 22. Enterin g the ON CE Stat e
PRELIMINARY 47
A80960CF-40, -33, -25, -16
Figure 23. Clock Syn chro niz atio n in the 2-x Clock Mod e
Figure 24. Clock Syn chro niz atio n in the 1-x Clock Mod e
CLKIN
RESET
PCLK2:1
(Case 1)
PCLK2:1
(Case 2)
1.5 V
TIH TIS
1.5 V
1.5 V1.5 V
1.5 V 1.5 V
TCP
Max
Min TCP
Max
Min TCP
SYNC
Note: Case 1 and Case 2 show two possible polarities of PCLK2:1
Min
1.5 V
1.5 V
1.5 V
1.5 V
1.5 V
1.5 V
F_CX024A
Max
CLKIN 1.5 V1.5 V
RESET
TIH TIS
1.5 V
2x CLK
Note: In 1x clock mode, the RESET pin is actually sampled on the falling edge of 2xCLK. 2xCLK is an internal signal
generated by the PLL and is not available on an external pin. Therefore, RESET is specified relative to the rising
edge of CLKIN. The RESET pin is sampled when PCLK is high. F_CX025A
48 PRELIMINARY
80960CF-40, -33, -25, -16 A
Figure 25. Non-Burst, No n- Pipel ined Requ ests Without Wait States
In
ADS
A31:4, SUP,
DMA, D/C,
BE3:0, LOCK
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0
PCLK
ADADAD
In
Valid Valid Valid
Valid Valid
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
00
00
XX
xx 0
00000 X
xx 0
00000 OFF
0Disabled
0
0
0..0 Disabled
0
Valid
F_CX026A
Out
Function
Bit
Value xx
PRELIMINARY 49
A80960CF-40, -33, -25, -16
Figure 26. Non-Bu rst, No n- Pipel ined Read Req uest With Wait States
ADS
A31:2, BE3:0
DMA, D/C,
SUP, LOCK
W/R
BLAST
DT/R
DEN
WAIT
D31:0
PCLK
A3 21D1
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
01
01
X
xx X
xx X
xxxxx X
xx 3
00011 OFF
0Disabled
0
0
0..0 Disabled
0
In
Function
Bit
Value
Valid
Valid
A
F_CX027A
50 PRELIMINARY
80960CF-40, -33, -25, -16 A
Figure 27. Non-Bu rst, Non-P ip eli ned Write Requ est With Wait States
ADS
A31:2,
W/R
BLAST
DT/R
DEN
SUP, DMA,
WAIT
D31:0
PCLK
A3 21 D1
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
01
01
X
xx X
xx 3
00011 X
xx X
xxxxxx OFF
0Disabled
0
0
0..0 Disabled
0
Out
A
Function
Bit
Value
Valid
Valid
D/C, LOCK
F_CX028A
BE3:0
PRELIMINARY 51
A80960CF-40, -33, -25, -16
Figure 28. Burst, Non- Pi pel ined Re ad Req uest Without Wait States, 32-Bit Bus
In0
ADS
A31:4, SUP,
DMA, D/C,
BE3:0, LO C K
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0
PCLK
ADDDDA
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
00
00
32-Bit
10 X
xx X
xxxxx 0
00 0
00000 OFF
0Enabled
1
0
0..0 Disabled
0
F_CX029A
Function
Bit
Value
In3In2In1
Valid
00 01 10 11
52 PRELIMINARY
80960CF-40, -33, -25, -16 A
Figure 29. Burst, Non -P ipeli ned Read Requ est With Wait States, 32-Bit Bus
ADS
A31:4, SUP,
DMA, D/C,
BE3:0, LOCK
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0
PCLK
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
01
01
32-bit
10 X
xx X
xxxxx 1
01 2
00010 OFF
0Enabled
1
0
0..0 Disabled
0
A21 D 1D1 D 1D1 A
In1 In2 In3
In0
Valid
00 1101 10
Function
Bit
Value
F_CX030A
PRELIMINARY 53
A80960CF-40, -33, -25, -16
Figure 30. Burst, No n-P ipel in ed Write Requ est With out Wait States, 32-Bit Bus
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
00
00
32-bit
10 0
00 0
00000 X
xx X
xxxxx OFF
0Enabled
1
0
0..0 Disabled
0
ADS
A31:4, SUP,
DMA, D/C,
BE3:0, LOCK
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0
PCLK
ADDDDA
Function
Bit
Value
00 01 10 11
Out0
Valid
Out3Out2Out1
F_CX031A
54 PRELIMINARY
80960CF-40, -33, -25, -16 A
Figure 31. Burst, Non -Pi p eli ned Write Request With Wait States, 32-Bit Bu s
ADS
A31:4, SUP,
DMA, D/C,
BE3:0, LOCK
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0
PCLK
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
01
01
32-bit
10 1
01 2
00010 X
xx X
xxxxx OFF
0Enabled
1
0
0..0 Disabled
0
A21 D 1D 1 D1D1 A
Out0
Valid
00 1101 10
Function
Bit
Value
Out1 Out2 Out3
F_CX032A
PRELIMINARY 55
A80960CF-40, -33, -25, -16
Figure 32. Burst, Non-Pip el ined Read Requ est With Wait States, 16-Bit Bus
ADS
SUP, DMA,
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0
PCLK
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
01
01
16-bit
01 X
xx X
xxxxx 1
01 2
00010 OFF
0Enabled
1
0
0..0 Disabled
0
A21 D 1D 1 D1D1 A
Function
Bit
Value
Valid
A3:2 = 00 or 10 A3:2 = 01 or 11
D15:0
A1=0 D15:0
A1=1 D15:0
A1=0 D15:0
A1=1
D/C, LOCK,
A31:4, BE3/BHE,
BE1/A1
BE0/BLE
F_CX033A
56 PRELIMINARY
80960CF-40, -33, -25, -16 A
Figure 33. Burst, Non- Pi pel ined Read Req uest With Wait Stat es, 8-Bi t Bus
ADS
SUP, DMA,
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0
PCLK
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
01
01
8-bit
00 X
xx X
xxxxx 1
01 2
00010 OFF
0Enabled
1
0
0..0 Disabled
0
A21 D 1D1 D1D1 A
Function
Bit
Value
Valid
A3:2 = 00, 01, 10 or 11
D7:0
Byte 0 D7:0
Byte 1 D7:0
Byte 2 D7:0
Byte 3
D/C, LOCK,
A31:4
BE1/A1, A1:0 = 00 A1:0 = 01 A1:0 = 10 A1:0 =11
BE0/A0
F_CX034A
PRELIMINARY 57
A80960CF-40, -33, -25, -16
Figure 34. Non-Burst , Pipelined Read Req uest Without Wait States, 32-Bit Bu s
Non-pipelined request concludes
pipelined reads begin. Pipelined reads conclude,
non-pipelined requests begin.
ADS
A31:4, SUP,
DMA, D/C,
LOCK
BLAST
WAIT
D31:0
PCLK
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
0X
xx
X
xx X
xx X
xxxxx X
xx 0
00000 ON
1Disabled
0
0
0..0 X
x
Function
Bit
Value
IN
DIN
D' IN
D'' IN
D''' IN
D''''
AA'
DA''
D' A'''
D'' A''''
D''' D''''
Valid Valid Valid Valid Valid Invalid
Invalid
DT/R
DEN
A3:2
BE3:0 Valid Valid Valid Valid Valid Invalid
W/R
F_CX035A
58 PRELIMINARY
80960CF-40, -33, -25, -16 A
Figure 35. Non-Bu rst, Pipeli ned Read Requ est With Wait States, 32-Bit Bus
Non-pipelined requ est concludes
pipelined reads begin. Pipelined reads conclude,
non-pipelined requests begin.
ADS
A31:4, SUP,
DMA, D/C,
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0
PCLK
BE3:0
A1 A'
D1D'
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
0X
xx
X
xx X
xx X
xxxxx X
xx 1
00001 ON
1Disabled
1
0
0..0 X
x
IN
D'
Invalid
Valid Valid Invalid
IN
D
LOCK Valid Valid Invalid
Function
Bit
Value
F_CX036A
PRELIMINARY 59
A80960CF-40, -33, -25, -16
Figure 36. Burst, Pipel ined Read Req u est Witho ut Wait States, 32-Bit Bus
Pipelined reads
conclude, non-pipelined
requests begin
ADS
A31:4, SUP,
DMA, D/C,
BE3:0, LOCK
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0
PCLK
Non-pipelined request
concludes, pipelined
reads begin
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
31-23 22 18-1721 20-19 16-12 7-311-109-8 210
X
x0
0X
xx
32-bit
10 X
xx X
xxxxx 0
00 0
00000 ON
1Enabled
1
0
0..0 Disabled
0
ADDDA' D'D'
Valid Valid
In-
ValidValid01 10 1100
IN
DIN
DIN
DIN
DIN
DIN
D
Valid
D
Function
Bit
Value
In-
Valid
In-
Valid
F_CX037A
60 PRELIMINARY
80960CF-40, -33, -25, -16 A
Figure 37. Burst, Pipeli ned Read Requ est Wi th Wait States, 32-Bit Bu s
ADS
A31:4, SUP,
DMA, D/C,
BE3:0, LOCK
W/R
A3:2
D31:0
WAIT
BLAST
DT/R
DEN
PCLK
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
0X
xx
32-bit
10 X
xx X
xxxxx 1
01 2
00010 ON
1Enabled
1
0
0..0 Disabled
0
Function
Bit
Value
IN
DIN
DIN
DIN
DIN
D'
A21 D 1D1 D 1A'2 1
Valid
DD'
Valid In-
valid
In-
valid
00 01 10 11 Valid In-
valid
Non-pipelined request concludes,
pipelined reads begin. Pipelined reads conclu de,
non-pipelin ed req ues ts begin . F_CX038A
PRELIMINARY 61
A80960CF-40, -33, -25, -16
Figure 38. Burst, Pi pel ined Read Request With Wait States, 16-Bi t Bus
ADS
A31:4, SUP,
DMA, D/C,
BE0/BLE,
W/R
A3:2
BE1/A1
WAIT
BLAST
DT/R
DEN
PCLK
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
0X
xx
16-bit
01 X
xx X
xxxxx 1
01 2
00010 ON
1Enabled
1
0
0..0 Disabled
0
Function
Bit
Value
D15:0
A1=0 D15:0
A1=1 D15:0
A1=0 D15:0
A1=1 D15:0
D'
A21 D 1D1 D 1A'2 1
DD'
In-
valid
Non-pipelined request concludes,
pipelin ed reads beg in. Pipelined reads conclude,
non-pipelined requests begin.
A3:2 = 00 or 10 A3:2 = 01 or 11 Valid In-
valid
Valid In-
valid
BE3/BHE,
D31:0
F_CX040A
LOCK
Valid Valid In-
valid
62 PRELIMINARY
80960CF-40, -33, -25, -16 A
Figure 39. Burst, Pipel ined Read Requ est With Wait States, 8-Bit Bus
ADS
A31:4, SU P,
DMA, D/C,
LOCK
W/R
A3:2
BE1/A1,
WAIT
BLAST
DT/R
DEN
PCLK
Byte
Order Bus
Width NWDD NWAD NXDA NRDD NRAD Pipe-
Lining External
Ready
Control Burst
31-23 22 18-1721 20-19 16-12 7-311-10 9-8 2 1 0
X
x0
0X
xx
8-bit
00 X
xx X
xxxxx 1
01 2
00010 ON
1Enabled
1
0
0..0 Disabled
0
Function
Bit
Value
D7:0
Byte 0 D7:0
Byte 1 D7:0
Byte 2 D7:0
Byte 3 D7:0
D'
A21 D 1D1 D1A'2 1
DD'
In-
valid
Non-pipelined request concludes,
pipelined reads begin. Pipelined reads conclude,
non-pipelined requests begin.
Valid In-
valid
BE0/A0
D31:0
A3:2 = 00, 01, 10, or 11 Valid In-
valid
A1:0 = 00 A1:0 = 01 A1:0 = 10 A1:0 = 11
Valid Valid In-
valid
F_CX039A
PRELIMINARY 63
A80960CF-40, -33, -25, -16
Figure 40. Using External READY
PCLK
ADS
A31:4, SUP,
DT/R
DEN
READY
W/R
DMA, INST,
BLAST
BTERM
A3:2
WAIT
D31:0
D/C, BE3:0,
LOCK
D0 D1 D2 D3 D0 D1 D2 D3
00 01 10 11 00 01 10 11
ValidValid
Quad-Word Read Request
NRAD = 0, NRDD = 0, NXDA = 0
Ready Enab led
Quad-Word Write Request
NWAD = 1, NWDD = 0, NWDA = 0
Ready Enabled
F_CX041A
64 PRELIMINARY
80960CF-40, -33, -25, -16 A
Figure 41. Termin ating a Burst with BTE RM
PCLK
ADS
A31:4, SUP,
DT/R
DEN
READY
W/R
DMA, INST,
BLAST
BTERM
A3:2
WAIT
D31:0
D/C, BE3:0,
LOCK
D0 D1 D2 D3
Valid
Quad-Word Write Request
NWAD = 0, NWDD = 0, NWDA = 0
Ready Enab led
00 01 10 11
Note: READY adds memory access time to data transfers, whether or not the
bus access is a burst access. BTERM interrupts a bus access, whether or not
the bus access has more data transfe rs pen ding . Either the READY signal or
the BTERM signal will terminate a bus access if the signal is asserted during
the last (or only) data transfer of the bus access.
See Note
F_CX042A
PRELIMINARY 65
A80960CF-40, -33, -25, -16
Figure 42. BOFF Functional Timing
ADS
BLAST
READY
BOFF
A31:2, SUP,
D31:0,
BOFF may not
be asserte d
BOFF may not
be asserted
BOFF may be asserted to suspend request
Begin Request End Request
SUSPEND REQUEST
NON-BURST
Regenerate ADS
DMA, D/C,
BE3:0, WAIT,
DEN, DT/R
(WRITES)
BURST
RESUME REQUEST
BURST
Note: READY/BTERM must be enabled; NRAD, NRDD, NWAD, NWDD= 0 F_CX043A
MAY CHANGE
66 PRELIMINARY
80960CF-40, -33, -25, -16 A
Figu re 43. HOL D Fun ctio n al Timin g
Word Read Request
NRAD=1, NXDA=1
Word Read
Request
NRAD=0,
NXDA=0
Hold State Hold State
PCLK2:1
ADS
A31:2, SUP,
DMA, D/C,
BE3:0, WAIT,
DEN, DT/R
BLAST
HOLD
HOLDA
ValidValid
F_CX044A
PRELIMINARY 67
A80960CF-40, -33, -25, -16
Figure 44. DREQ and DACK Function al Timi ng
Figure 45. EOP Functional Timing
PCLK2:1
ADS
! (BLAST
& READY
DACKx
(All Modes)
DREQx
(Case 1)
DREQx
(Case 2)
Note:
F_CX018A
& !WAIT)
System
Clock
Start DMA
Bus Request
End DMA
Bus Request
DMA
Acknowledge
DMA
Request
tIS6 tIH6
tIS6 tIH6
(see Note)
1. Case 1: DREQ must deassert before DACK deasserts. This applies to all Fly-By modes: source synchronized
packing modes and destination synchronized unpacking modes.
2. Case 2: DREQ must be deasserted by the second clock (rising edge) after DACK is driv en high .
This applies to all other DMA transfers.
3. DACKx is asserted for the duration of a DMA bus request. The request may consist of multiple bus
accesses (defined by ADS and BLAST).
high to prevent next bus cycle
high to prevent next bus cycle
PCLK2:1
EOP
F_CX045A
Note: EOP has the same AC Timing Requirements as DREQ to prevent unwanted DMA requests. EOP is NOT edge
held for a minimum of 2 clock cycles then deasserted within 15 clock cycles.
triggered. EOP must be
15 CLKs Max
2 CLKs Min
68 PRELIMINARY
80960CF-40, -33, -25, -16 A
Figure 46. Terminal Count Functio n al Timing
Figure 47. FAIL Functional Timi n g
Note: Terminal Count becomes active during the last bus request of a buffer transfer. If the
last LOAD/STORE bus request is executed as multiple bus accesses, the TC will be active
for the entire bus request. Refer to the
i960® Cx Microprocessor User’s Manual
for
furth er info rmation .
PCLK2:1
DREQ
ADS
DACK
TC
F_CX046A
RESET
FAIL
~65,0 00 Cycles 5 Cycles 102 Cycles
(Bus Test)
Pass
(Internal Self-Test)
Pass
Fail Fail
F_CX047A
PRELIMINARY 69
A80960CF-40, -33, -25, -16
Figure 48. A Summary of Aligned and Un aligned Transfers for Little En dian Regions
04812162024
0123456
One Double-Word
Short-Word
Load/Store
Word
Load/Store
Double-Word
Load/Store
Byte, Byte Requests
Short Request (Aligned)
Short Request (Aligned)
Byte, Byte Requests
Word Request (Aligned)
Byte, Short, Byte, Requests
Short, Shor t Reques ts
Byte, Short, Byte Requests
Byte Offset
Word Offset
F_CX048A
One Doub le-Word Burst (Align ed)
Byte, Short, Word, Byte Requests
Short, Word, Short Reque sts
Byte, Word, Short, Byte Requests
Word, Word Requests
Requ est (Aligne d)
70 PRELIMINARY
80960CF-40, -33, -25, -16 A
Figure 49. A Summary of Aligned and Unaligned Transfers for Little Endian Regions (Continued)
04812162024
0123456
Triple-Word
Load/Store
Quad-Word
Load/Store
Word, Word,
Word Requests
Requests
Double-
Double-
Word, Word, Word,
Word Requests
Byte Offset
Word Offset
One Three-Word
Request (Aligned)
Byte, Short, Word,
Word, Byte Requests
Short Requests
Short, Word, Word,
Byte, Word, Word,
Short, Byte Requests
Word, Word,
Word Requests
One Four-Word
Requ est (Aligne d)
Byte, Short, Word, Word,
Word, Byte Requests
Short, Word, Word, Word,
Short Requests
Byte, Word, Word, Word,
Short, Byte Requests
F_CX049A
Requests
Word,
Word
Word,
Word,
Word,
PRELIMINARY 71
A80960CF-40, -33, -25, -16
Figure 50. Idle Bus Operation
7.0 REVISION HISTORY
This is a new dat a sheet for the 80960CF-40 pr oduct. It is derived from the 80960CF-33, -25, -16 data sheet.
Aside from a few minor edits, only the AC Characteris tics differ from the 80960CF-33, -25, -16 data sheet .
PCLK
ADS
A31:4, SUP,
DMA, INST,
D/C, BE3:0
LOCK
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0
READY,
BTERM
Write Request
NWAD=2, NXDA = 0
Ready Disabled
Idle Bus
(not in Hold Acknowledge state) Read Request
NWAD=2, NXDA = 0
Ready Disabled
In
Out
Valid
Valid
Valid Valid
Valid Valid
F_CX050A