preliminary TDA4863
Infineon Tech PCI Group 14.02.02 1
Power Factor Controller
IC for High Power Factor and
low THD
· IC for sinusoidal line -current consumption
· Power fa ctor achieves nearly 1
· Controls boost converter as active harmonic
filter for low THD
· St art up with low current consumption
· Zero current detector for discontinuous oper-
ation mode
· Output overvoltage protection
· Output undervoltage lockout
· Internal start up timer
· Totem pole output wit h active shut down
· Internal leading edge blanking LEB
Improvements referred to TDA 4862
· Suitable for universal input applications with
low THD at low load conditions
· Very low start up current
· Accurate OVR and VISENSEmax threshold
· Competiton compatibel VCC thresholds
· Enable threshold referred to VVSENSE
Boost Contro ller
P-DIP-8-4
The TDA4863 IC controls a boost converter in
a way that sinusoidal current is taken from the
single phase line supply and stabilized DC
voltage is available at the output. This active
harmonic filter limits the harmonic currents
resulting from the capacitor pulsed charge cur-
rents during rectification. The power factor
which descibes the ratio between active and
apparent power is almost one. Line voltage
fluctuations can be compensated very effi-
ciently
Type Ordering Code Package
TDA 4863 Q67040-S4452 P-DIP-8-4
TDA 4863G Q67040-S4451 P-DSO-8-3
AC line DC Output
Volage
GND
TDA4863
RF-Filter
and
Rectifier
P-DSO-8-3
preliminary TDA4863
Infineon Tech PCI Group 14.02.02 2
Pin Connections
Pin Description
Pin1 VSENSE (voltage amplifier inverting input)
VSENSE is connected via a resistive divider to the boost converter output. With a capacitor connected to
VAOUT the internal error amplifier acts as an integrator.
Pin2 VAOUT (voltage amplifier output)
VAOUT is connected internally to the first multiplier input. To prevent overshoot the input voltage will be
clamped internally at 5V. Input voltage less then 2.2V inhibits the gate driver.If the current flowing into this pin
is exceeding an internal threshold the multiplier output voltage is rdeuced to prevent the MOSFET from
overvoltage damage.
Pin 3 MULTIN (multipier input)
MULTIN is the second multiplier input and is connected via a resistive divider to the rectifier output voltage.
Pin 4 ISENSE (current sense input)
ISENSE is connected to a sense resistor controlling the MOSFET source current. The input is internally
clamped at -0.3V to prevent negative input voltage interaction. A leading edge blanking circuitry suppresses
voltage spik s when turning the MO SF E T on.
Pin 5 DETIN (Zero current detector input)
DETIN is connected to an auxiliary winding monitoring the zero crossing of the inductor current.
Pin 6 GND (Ground)
Pin 7 GTDRV (Gate driver output)
GTDRV is the output of a totem-pole circuitry for direct driving a MOSFET. An active shutdown circuitry
ensures that GTDRV is low if the IC is switched off.
Pin 8 Vcc (Positive voltage supply)
If Vcc exceeds the turn-on threshold the IC is switched on. When Vcc falls below the turn-off threshold it is
switched off and power consumption is very low. An auxilliary winding is charging a capacitor which provides
the supply current. A second 100nF ceramic capacitor should be added to Vcc to absorbe supply current
spikes required to charge the MOSFET gate capacitance.
Pin Symbol Function
1 VSENSE Voltage amplifier inverting input
2 VAOUT Voltage amplifier output
3 MULTIN Mult iplie r inp ut
4 ISENSE Current sense input
5 DETIN Zero current detector input
6 GND Ground
7 GTDRV Gate driver output
8 VCC Positive voltage supply
1 VSENSE
2 VAOUT
3 MULTIN
4 ISENSE
8 VCC
7 GTDRV
6 GND
5 DETIN
preliminary TDA4863
Infineon Tech PCI Group 14.02.02 3
Block Diagram
Functional Description
Introduction
Conventional electronic ballasts and switching power supplies are designed with a bridge rectifier
and a bulk capacitor. Their disadvantage is that the circuit draws power from the line when the
instantaneous AC voltage exceeds the capacitors voltage. This occurs near the line voltage peak
and causes a high charge cur rent spike with foll owing character istics: The app arent power is higher
than the real power that means low power factor condition, the current spikes are non sinusoidal
with a high content of harmonics causing line noise, the rectified voltage depends on load condition
and requires a large bulk capacitor, special efforts in noise suppression are necessary.
With the TDA4863 preconverter a sinusoidal current is achieved which varies in direct instantane-
ous proportional to the input voltage half sine wave and so provides a power factor near 1. This is
due to the appearence of almost any complex load like a resistive one at the AC line. The harmoni c
distortions are reduced and comply with the IEC555 standard requirements.
GTDRV
Reference
Voltage
Vref
Gate
Drive
+
-
Voltage
Amp
Multiplier
RS
Flip-Flop
+
-
UVLO
Restart
Timer
+
-
Detector
VSENSE VAOUT MULTIN ISENSE
DETINVCC GND
+
-
Current
Comp
multout
+
+
-
-
Inhibit
time delay
2.2V
0.2V
2.5V
uvlo
active
shu t down
1.5V
1.0V
12.5V
10V
t
dVA
=2us
t
res
=150us
t
dsd
=70ns
20V
+
1V
Inhibit
Enable
OVR
0.5V
1V
3.5V
Vref
-
+
+
-
Clamp
Current
5V
+
-
5.4V
LEB
preliminary TDA4863
Infineon Tech PCI Group 14.02.02 4
IC Description
The TDA4863 contains a wide bandwidth voltage amplifier used in a feedback loop, an overvoltage
regulator, an one quadrant multi plier wit h a wide linear operating ra nge, a curr ent sense comp arator,
a zero curr ent detect or, a PWM and l ogic circ uitr y, a totem-p ole MOSFET dri ver, an internal t rimmed
voltage reference, a restart timer and an undervoltage lockout circuitry.
Voltage Amplif ier
With an external capacitor between VSENSE and VAOUT the voltage amplifier forms an integrator.
The integrat or moni tors t he av erage out put voltage over several li ne c ycles. Typical ly t he int egrator s
bandwidt h is set below 20 Hz in order to suppress the 100 Hz ripple of the recti fied li ne volt ag e. The
voltage amplifier is internally compensated and has a gain bandwidth of 3 MHz and a phase margin
of 80 degrees. The non-inverting input is biased internally at 2.5V. The output is directly connected
to the multiplier input.
The gate drive is disabled when VSENSE vol tage is less than 0.2 V or VVAOUT voltage is less than
2.2 V.
If the MOSFET i s placed n earby the con troller switching inteferences have to be taken into account.
The output of the voltage amplifier is designed in a way to minimiz e these inteferen ces.
Overvoltage Reg ulator
Because of the integrators low bandwidth fast changes of the output voltage can’t be regulated
whithin an adequate time. Fast output changes occure during initial start-up, sudden load removal,
or output arcing. While the integrators differential input voltage remains zero during this fast
changes a peak current is flowing through the external capacitor into pin VAOUT. If this current
exceeds an internal defined margin the overvoltage regulator circuitry reduces the multiplier output
volt age. As a result the on time of the MOSFET is reduced.
Multiplier
The one quadrant multiplier regulates the gate driver with respect of the DC output voltage and the
AC half wave rectified input voltage. Both inputs are designed to achieve good linearity over a wide
dynamic range to represent an AC line free from distortion. Special efforts are made to assure uni-
versal line applications with respect to a 90 to 270 V AC range.
The multiplier output is internally clamped at 1.3V. So the MOSFET is protected against critical
operating during start up.
Current sense comparator, LEB and RS Flip-Flop
An external sense resistor transferes the source current of the MOSFET into a sense voltage.The
multipli er output volt age is compared with this sense voltage.
To protect the current comparator input from negative pulses a current source is inserted which
sends current out of the ISENSE pin every time when ISENSE is falling below ground potential..
The switch-on current peak of the MOSFET is blanked out via an leading edge blanking circuit with
a blanking time of ty ically 200ns.
The RS Flip-Flop ensures that only one single switch-on and switch-off pulse appears at the gate
drive output dur ing a given cycle (double puls e suppression).
preliminary TDA4863
Infineon Tech PCI Group 14.02.02 5
Zero Current Detector
The zero current detector senses the inductor current via an auxiliary winding and ensures that the
next on-time of the MOSFET is initiated immediately when the inductor current has reached zero.
This diminishes the revers recovery losses of the boost converter diode. The MOSFET is switched
off when the voltage drop of the shunt resistor reaches the voltage level of the multipler output. So
the boost current waveform has a triangular shape and there are no deadtime gaps between the
cycles. This leads to a continuous AC line current limiting the peak current to twice of the average
current.
To prevent false tri pping the zero current detector is designed as a Schmitt-Trigger with a hysteresi s
of 0.5V. An internal 5V clamp protects the input from overvoltage breadkdown, a 0.6V clamp pre-
vents substrate injection. An external resistor has to be used in series with the auxiliary winding to
limit the cur rent through the clamps.
Restart Timer
The restart timer function eliminates the need of an oscillator when. The timer starts or restarts the
TDA4863 when the driver output has been off for more than 150us after the inductor current
reaches zero .
Undervoltage Lockout
An undervoltage lockout circuitry switches the IC on when Vcc reaches the upper threshold VCCH
and switches the IC off when Vcc is falling below the lower threshold VCCL. During start up the sup-
ply current is less then 100uA.
An internal voltage clamp has been added to protect the IC from Vcc overvoltage condition. When
using this clamp special care must be t a ken on power dissipation.
Start up current is provided by an external start up resistor which is connected from the AC line to
the input supply voltage Vcc and a storage capacitor which is connected from Vcc to ground. Be
aware that this capacitor is discharged befor the IC is plugged into the application board. Otherwise
the IC can be destroyed due to the high capacitor voltage.
Bootstrap power supply is created with the previous mentioned auxiliary winding and a diode (see
application circuit).
Gate Drive
The TDA4863 totem pole output stage is MOSFET compat ible. An internal protection ciruitry is acti-
vated when Vcc is within the start up phase and ensures that the MOSFET is turned off. The totem
pole output has been optimized to minimize cross conduction current during high speed operation.
preliminary TDA4863
Infineon Tech PCI Group 14.02.02 6
Signal Diagrams
DETIN
GTDRV
LEB
VISENSE multout
IVAOUT
Icoil
I
OVR
preliminary TDA4863
Infineon Tech PCI Group 14.02.02 7
Absolute maximum ratings
Parameter Symbol Min Max Unit Remark
Supply + Zener Current ICCH+Iz - 20 mA
Supply Voltage VCC -0.3 Vz V V z=Z ene r Voltage
Icc+Iz=20mA
Voltage at Pin 1,3,4 -0.3 6.5 V
Current into Pin 2 IVAOUT -10 30 mA
mA VAOUT=4V,VSENSE=2.8V
VAOUT=0V,VSENSE=2.3V
t<1ms
Current into Pin 5 IDETIN -10 10 mA
mA DETIN > 6V
DETIN< 0.4V
t<1ms
Current into Pin 7 IGTDRV -500 500 mA t<1ms
ESD Protection 2000 V MIL STD 883C method
3015.6, 100pF,15009
Storage Temperature Tstg -50 150 °C
Operating Junction Temper-
ature TJ-40 150 °C
Thermal Resistance
Junction-Ambient RthJA 100
180 K/W
K/W P-DIP-8
P-DSO-8
preliminary TDA4863
Infineon Tech PCI Group 14.02.02 8
Characteristics
Unless otherwise stated, -40°C<Tj <150 °C, VCC = 14.5V
Parameter Symbol min. typ. max. Unit Test Condition
Start-Up ci rcuit
Zener Voltage Vz 18 20 22 V Icc+Iz=20mA
Start-up supply current ICCL 20 100 uA Vcc=VCCON - 0.5V
Oper ating supply curr ent ICCH 4 6 mA Output low
Vcc Turn-ON threshold VCCON 12 12.5 13 V
Vcc Turn-OFF threshold VCCOFF 9.5 10 10. 5 V
Vcc Hyst eresi s VCCHY 2.5
Voltage Amplif ier
Voltage feedback Input
Threshold VFB 2.45 2.5 2.55 V
Line regulation VFBLR 5mVV
CC=12V to 16V
Open Loop V oltage Gain1) GV100 dB
Unity Gain Bandwidth1)B
W5MHz
Phase Margin1) M 80 Degr
Bias current VSENSE IBVSENSE -1.0 -0.3 uA
Enable T hres hol d VVSENSE 0.2 V
Inhibit Th reshold Voltage VVAOUTI 2.2 V VISENSE= -0.1V
Inhibit Time Delay tdVA 3usV
ISENSE= -0.1V
Output Current Source IVAOUTH -6 mA VAOUT=0V
VSENSE=2.3V, t<1ms
Output Current Sink IVAOUTL 30 mA VAOUT=4V
VSENSE=2.8V,t<1ms
Upper Clamp Voltage VVAOUTH 5.4 V VSENSE=2.3V, I= -0.2mA
Lower Clamp Voltage VVAOUTL 1.1 V VSENSE=2.8V, I=0.5mA
Overvoltage Reg ulator
Threshold Current IOVR 35 40 45 uA Tj=25°C
1) guaranteed by design, not tested
preliminary TDA4863
Infineon Tech PCI Group 14.02.02 9
Current Comparator
Input Bias Current IBISENSE -1 -0.2 1 uA VISENSE=0V
Input Offset Volta ge VISENSEO 25 mV VAOUT=2.7V
Max Threshold Voltage VISENSEM 0.95 1.0 1.05 V
Threshold at OVR VISENOVR 0.05 V IOVR=50uA
Leading Edge Blanking tLEB 200 ns
Shut Down Delay tdISG 80 ns
Detector
Upper threshold voltage VDETINU 1.5 V
Lower threshold voltage VDETINL 1V
Hysteresis VDETINHY 0.5 V
Input curr en t IBDETIN -1 -0.2 1 uA VDETIN=2V
Input clamp volta ge
High state
Low state VDETINHC
VDETINLC
5
0.5 IDETIN=5mA
IDETIN=-5mA
Multiplier
Input bias cur ren t IBMULTIN -1 -0.2 1 uA VMULTIN=0V
Dynamic voltage range
MULTIN VMULTIN 0 to 4 V VVAOUT=2.75V
Dynamic voltage range
VAOUT VVAOUT
VFB to
VFB+1.
5VMULTIN=1V
Mult ipl ier Gain Klow
Khigh 0.3
0.7 VVAOUT<3V, VMULTIN=1V
VVAOUT>3.5V,VMULTIN=1V
K=delta VVISENSE/deltaVVAOUT at VMULTIN=constant
Restart Timer
restart time tRES 100 160 250 us
Parameter Symbol min. typ. max. Unit Test Condition
preliminary TDA4863
Infineon Tech PCI Group 14.02.02 10
Gate Drive
Output voltage low state
Output voltage low state
Output voltage low state
VGTL
VGTL
VGTL
1.0
1.7
2.2
V
V
V
IGT= 2mA
IGT= 20mA
IGT=200mA
Output voltage high state
Output voltage high state
Output voltage high state
VGTH
VGTH
VGTH
10.9
10.7
9.6
V
V
V
IGT=-20mA
IGT=-200mA
IGT=-2mA, VCC=11V
see Diagram 14
Output voltage active shut
down VGTSD 1VI
GT=20mA, VCC=9V
Rise time
Fall time trise
tfall 80
55 180
120 ns
ns CGT= 4.7nF Vout=2...8V
CGT= 4.7nF Vout=2...8V
Parameter Symbol min. typ. max. Unit Test Condition
preliminary TDA4863
Infineon Tech PCI Group 14.02.02 11
Electric al Diagrams
Diagram 2: VCCON/OFF versus
Temperature
7
8
9
10
11
12
13
14
-40 0 40 80 120 160
Tj / °C
Vcc / V
VCC ON
VCC OFF
Diagram 1: Icc versus Vcc
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
0 5 10 15 20
Vcc/V
Icc / mA
VCC ON
VCC OFF
Diagram 3: Iccl ver sus Vcc
0
5
10
15
20
25
30
35
40
45
50
0246810121416
Vcc / V
Iccl / uA
Diagram 4: ICCL versus
Temp eratu re, VCC=10V
0
5
10
15
20
25
30
35
40
45
50
-40 0 40 80 120 160
Tj / °C
ICCL / uA
preliminary TDA4863
Infineon Tech PCI Group 14.02.02 12
Diagr am 6: Open loop gain and
Phase versus frequency
0
20
40
60
80
100
120
0,01 0,1 1 10 100 1000 10000
f/kHz
0
20
40
60
80
100
120
140
160
180
Phi/deg
GV/dB
Phi
G
v
Diagr am 7: Overvolt age R egulat or
VISENSE vers. Threshold Volt age
0
0,2
0,4
0,6
0,8
1
1,2
35 37 39 41 43 45
Iovp / uA
VISENSE / V
VVAOUT = 3. 5V
VMULTIN = 3. 0V
Diagram 5: VFB vers. Temperature
(pin1 connecte d to pin2)
2,45
2,46
2,47
2,48
2,49
2,5
2,51
2,52
2,53
2,54
2,55
-40 0 40 80 120 160
Tj / °C
VFB / V
Di agra m 8: Leading edge
bl anki ng ve rs. Tem p.
0
50
100
150
200
250
300
-40 0 40 80 120 160
Tj / °C
LEB / ns
preliminary TDA4863
Infineon Tech PCI Group 14.02.02 13
Diagr am 9: Current Sense
Threshold VISENSE versus VMULTIN
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1
01234
VMULTIN / V
VISENSE
/ V
VAOUT=2.75V
3.0V
3.5V
4.0V
4.5V
3.25V
Diagr am 10: C urrent sense
threshold VISENSE versus VVAOUT
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1
2,5 3 3,5 4 4,5
VVAOUT / V
VISENSE / V
1.0
1.5
2.0
3.0
Vmultin=4.0
0.5
0.25
Diagram 11: Restart time versus
temperature
100
120
140
160
180
200
220
-40 0 40 80 120 160
Tj / °C
trst / us
preliminary TDA4863
Infineon Tech PCI Group 14.02.02 14
Diag r am 12 : G ate Dr i v e Ri se
Tim e a nd Fal l Tim e ve rs.
temperature
0
20
40
60
80
100
120
140
-40 0 40 80 120 160
Tj / °C
rise time / ns
rise
time
fall
time
Diagram 13: Gate drive voltage
hi gh sta te versus Vcc
8
8,5
9
9,5
10
10,5
11
11,5
12
11 13 15
Vcc / V
V
GTH
/ V
IGT=-2mA
IGT=-20mA
IGT=-200mA
preliminary TDA4863
Infineon Tech PCI Group 14.02.02 15
Vin
90-270V AC
C9
220n
R9
33k
R7
9.1k
R6B
470k
C10
47uF
25V
C8
47uF
450V
R11
0.5
R4A
820k
R5
10k
TDA4863
R10
12
R4B
820k
D5
MR856
R12
470
R8A
120k R8B
120k
R6A
470k
C4
10n
R7
9.1k
C13
3.3n
400V
D7
D6
CoolMOS
SPP04N60S5
0.95 Ohm
C1
1u
C2
1u
1234
5678
Vout
410V DC
Application circuit: Pout=110W, universal Input Vin=90-270V AC
GND
L1=750uH
E36/11,N27; gap=2mm
W1=85 turns,d=40x0.1
W2=17 turns, d=0.3
RF filter
and
rectifier
preliminary TDA4863
Infineon Tech PCI Group 14.02.02 16
Results of THD measurements with application board Pout=110W
Diagram:THD Class C: Pmax=110W, Vinac=90V, Iout=250mA, Vout=420, PF=0.998
Diagramm: THD ClassC: Pmax=110W, Vinac=220V, Iout=250mA, Vaout=420V, PF=0.992
Diagramm: THD ClassC: Pmax=110W, Vinac=270V, Iout=250mA, Vaout=420V, PF=0.978
0,00
0,05
0,10
0,15
0,20
0,25
0,30
Current RMS(Amps)
Harmonic #
4 8 12 16 20 24 28 32 36 40
0,000
0,025
0,050
0,075
0,100
0,125
0,150
0,175
0,200
0,225
Current RMS(Amps)
Harmonic
#
4 8 12 16 20 24 28 32 36 40
0,000
0,025
0,050
0,075
0,100
0,125
0,150
0,175
Current RMS(Amps)
Harmonic #
4 8 12 16 20 24 28 32 36 40
preliminary TDA4863
Infineon Tech PCI Group 14.02.02 17
Diagramm: THD ClassC: Pmax=110W, Vinac=90V, Iout=140mA, Vaout=420V, PF=0.999
Diagramm: THD ClassC: Pmax=110W, Vinac=270V, Iout=140mA, Vaout=420V, PF=0.975
Diagramm: THD ClassC: Pmax=110W, Vinac=270V, Iout=140mA, Vaout=420V, PF=0.883
0,00
0,05
0,10
0,15
0,20
0,25
0,30
Current RMS(Amps)
Harmonic #
4 8 12 16 20 24 28 32 36 40
0,000
0,025
0,050
0,075
0,100
0,125
Current RMS(Amps)
Harmonic
#
4 8 12 16 20 24 28 32 36 40
0,00
0,01
0,02
0,03
0,04
0,05
0,06
0,07
0,08
0,09
0,10
Current RMS(Amps)
Harmonic #
4 8 12 16 20 24 28 32 36 40