6 GHz to 10 GHz,
GaAs, MMIC, I/Q Mixer
Data Sheet HMC520A
Rev. A Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2017–2018 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
RF range: 6 GHz to 10 GHz
LO input frequency range: 6 GHz to 10 GHz
Conversion loss: 8 dB typical at 6 GHz to 10 GHz
Image rejection: 23 dBc typical at 6 GHz to 10 GHz
LO to RF isolation: 43 dB typical
LO to IF isolation: 25 dB typical
Input IP3: 19 dBm typical
Input P1dB compression: 10 dBm typical at 7.1 GHz to
8.5 GHz
Wide IF frequency range: dc to 3.5 GHz
24-terminal, ceramic leadless chip carrier
APPLICATIONS
Point to point microwave radios
Point to multipoint radios
Video satellites
Digital radios
Instrumentation
Automatic test equipment
FUNCTIONAL BLOCK DIAGRAM
13
1
3
4
2
7
NIC
NIC
GND
RF 5
6
GND
NIC NIC
14 GND
15 LO
16 GND
17 NIC
18 NIC
NIC
8
NIC
9
IF1
10
NIC
11
IF2
1219
GND
GND
NIC
20
NIC
21
NIC
22
NIC
23
NIC
24
NIC
PACKAGE
BASE
90° HY BR I D
HMC520A
13605-001
Figure 1.
GENERAL DESCRIPTION
The HMC520A is a compact gallium arsenide (GaAs),
monolithic microwave integrated circuit (MMIC), in-phase
quadrature (I/Q) mixer in a 24-terminal, RoHS compliant,
ceramic leadless chip carrier (LCC) package. The device can
be used as either an image reject mixer or a single sideband
upconverter. The mixer uses two standard double balanced
mixer cells and a 90° hybrid fabricated in a GaAs, metal
semiconductor field effect transistor (MESFET) process. The
HMC520A is a smaller alternative to a hybrid style image reject
mixer and a single sideband upconverter assembly. The
HMC520A eliminates the need for wire bonding, allowing the
use of surface-mount manufacturing techniques.
HMC520A Data Sheet
Rev. A | Page 2 of 32
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Absolute Maximum Ratings ............................................................ 4
Thermal Resistance ...................................................................... 4
ESD Caution .................................................................................. 4
Pin Configuration and Function Descriptions ............................. 5
Interface Schematics..................................................................... 5
Typical Performance Characteristics ............................................. 6
Downconverter Performance: IF = 100 MHz, Lower Sideband
(High-Side LO) ............................................................................. 6
Downconverter Performance: IF = 100 MHz, Upper
Sideband (Low-Side LO) ............................................................. 8
Downconverter Performance: IF = 1500 MHz, Lower
Sideband (High-Side LO) .......................................................... 10
Downconverter Performance: IF = 1500 MHz, Upper
Sideband (Low-Side LO) ........................................................... 12
Downconverter Performance: IF = 3500 MHz, Lower
Sideband (High-Side LO) .......................................................... 14
Downconverter Performance: IF = 3500 MHz, Upper
Sideband (Low-Side LO) ........................................................... 16
Upconverter Performance: IF Input Frequency (IFIN) =
100 MHz, Lower Sideband (High-Side LO) ........................... 18
Amplitude and Phase Balance Downconverter: IF =
100 MHz, Lower Sideband (High-Side LO) ........................... 19
Amplitude and Phase Balance Downconverter: IF =
1500 MHz, Lower Sideband (High-Side LO) ......................... 20
Amplitude and Phase Balance Downconverter: IF =
3500 MHz, Lower Sideband (High-Side LO) ......................... 21
IF Bandwidth, Downconverter Performance ......................... 22
Isolation and Return Loss ......................................................... 23
Spurious and Harmonics Performance ................................... 24
Theory of Operation ...................................................................... 25
Applications Information .............................................................. 26
Performance to 13 GHz ............................................................. 26
Soldering Information and Recommended Land Pattern .... 30
Evaluation Board Information ................................................. 31
Outline Dimensions ....................................................................... 32
Ordering Guide .......................................................................... 32
REVISION HISTORY
6/2018—Rev. 0 to Rev. A
Changes to Table 1 ............................................................................ 3
Changes to Table 2, Thermal Resistance Section, and Table 3 ... 4
Changes to Figure 2 .......................................................................... 5
Deleted Table 6 Title Through Table 9 Title; Renumbered
Sequentially ..................................................................................... 24
Changes to Theory of Operation Section .................................... 25
Changes to Applications Information Section and Figure 83... 26
Added Performance Up to 13 GHz Section and Figure 84
Through Figure 86; Renumbered Sequentially........................... 26
Added Figure 87 Through Figure 92 ........................................... 27
Added Figure 93 Through Figure 98 ........................................... 28
Added Figure 99 Through Figure 104 ......................................... 29
Added Soldering Information and Recommended Land Pattern
Section and Figure 105 .................................................................. 30
Added Note 1 and Note 2, Table 6 ................................................ 31
Updated Outline Dimensions ....................................................... 32
Changes to Ordering Guide .......................................................... 32
1/2017—Revision 0: Initial Version
Data Sheet HMC520A
Rev. A | Page 3 of 32
SPECIFICATIONS
Local oscillator (LO) = 15 dBm, intermediate frequency (IF) = 100 MHz, radio frequency (RF) = −10 dBm, and TA = 25°C, unless
otherwise noted. All measurements were made as a downconverter with the lower sideband selected (high-side LO) and an external 90°
IF hybrid at the IF ports, unless otherwise noted.
Table 1.
Parameter Test Conditions/Comments Min Typ Max Unit
RF RANGE1 6 10 GHz
LO INPUT FREQUENCY RANGE 6 10 GHz
IF FREQUENCY RANGE DC 3.5 GHz
LO AMPLITUDE 15 dBm
6 GHz TO 10 GHz DOWNCONVERTER PERFORMANCE
Conversion Loss
8
10
dB
Noise Figure 8.5 dB
Input Third-Order Intercept (IP3) 19 dBm
Input Power for 1dB Compression (P1dB) 10.5 dBm
Image Rejection 19 23 dBc
LO to RF Isolation Taken without external 90° IF hybrid 38 43 dB
LO to IF Isolation Taken without external 90° IF hybrid 25 dB
Phase Balance Taken without external 90° IF hybrid 5 Degrees
Amplitude Balance Taken without external 90° IF hybrid 0.3 dB
7.1 GHz TO 8.5 GHz DOWNCONVERTER PERFORMANCE
Conversion Loss 7.7 9.5 dB
Noise Figure 8 dB
Input IP3 19 dBm
Input P1dB 10 dBm
Image Rejection
21
25
dBc
LO to RF Isolation Taken without external 90° IF hybrid 38 43 dB
LO to IF Isolation Taken without external 90° IF hybrid 25 dB
Phase Balance Taken without external 90° IF hybrid 4 Degrees
Amplitude Balance Taken without external 90° IF hybrid 0.3 dB
6 GHz TO 10 GHz UPCONVERTER PERFORMANCE
Conversion Loss 7.5 dB
Input IP3 18 dBm
Sideband Rejection
22
dBc
1 For RF performance from 10 GHz to 13 GHz, see the Performance to 13 GHz section.
HMC520A Data Sheet
Rev. A | Page 4 of 32
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter Rating
RF Input Power 20 dBm
LO Input Power 27 dBm
IF1 and IF2 Input Power 20 dBm
IF Source or Sink Current 12 mA
Maximum Peak Reflow Temperature 260°C
Maximum Junction Temperature (TJ) 175°C
Lifetime at Maximum TJ >1 × 106 Hours
Moisture Sensitivity Level (MSL)1 MSL3
Continuous Power Dissipation, PDISS2 (TA = 85°C,
Derate 4.44 mW/°C Above 85°C)
400 mW
Operating Temperature Range −40°C to +85°C
Storage Temperature Range −65°C to +150°C
Lead Temperature Range (Soldering 60 sec) −65°C to +150°C
Electrostatic Discharge (ESD) Sensitivity
Human Body Model (HBM) 750 V (Class 1B)
Field Induced Charged Device Model (FICDM) 1250 V (Class C3)
1 Based on IPC/JEDEC J-STD-20 MSL classifications.
2 PDISS is a theoretical number calculated by (TJ − 85°C)/θJC.
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
THERMAL RESISTANCE
Thermal performance is directly linked to printed circuit board
(PCB) design and operating environment. Careful attention to
PCB thermal design is required.
θJA is the natural convection, junction to ambient thermal
resistance measured in a one cubic foot sealed enclosure. θJC is
the junction to case thermal resistance.
Table 3. Thermal Resistance
Package Type θJA θ
JC Unit
E-24-11 175°C 225 °C/W
1 See JEDEC standard JESD51-2 for additional information on optimizing the
thermal impedance (PCB with 3 × 3 vias).
ESD CAUTION
Data Sheet HMC520A
Rev. A | Page 5 of 32
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
13
1
3
4
2
7
NIC
NIC
GND
RF 5
6
GND
NIC NIC
14 GND
15 LO
16 GND
17 NIC
18 NIC
NIC
8
NIC
9
IF1
10
NIC
11
IF2
1219
GND NIC
20
NIC
21
NIC
22
NIC
23
NIC
24
NIC
HMC520A
TOP VIEW
(No t to Scale)
NOTES
1. NIC = NOT INT E RNALY CONNECTED.
2. EXPOSED PAD. THE EXPOSED PAD
MUST BE CONNECTED T O T HE GND P IN.
13605-002
Figure 2. Pin Configuration
Table 4. Pin Function Descriptions
Pin No. Mnemonic Description
1, 2, 6 to 8, 10, 13,
17 to 24
NIC Not Internally Connected.
3, 5, 12, 14, 16 GND Ground. See Figure 7 for the GND interface schematic.
4 RF RF Port. This pin is ac-coupled internally and matched to 50 Ω. See Figure 3 for the RF interface schematic.
9, 11 IF1, IF2 First and Second Quadrature IF Input Pins. For applications that do not require operation to dc, use an
off chip dc blocking capacitor. For applications that require operation to dc, these pins must not
source or sink more than 12 mA of current because the device may not function or possible device
failure may result. See Figure 5 and Figure 6 for the IF1 and IF2 interface schematics.
15 LO LO Port. This pin is dc-coupled and matched to 50 Ω. See Figure 4 for the LO interface schematic.
EPAD Exposed Pad. The exposed pad must be connected to the GND pin.
INTERFACE SCHEMATICS
RF
13605-003
Figure 3. RF Interface Schematic
LO
13605-004
Figure 4. LO Interface Schematic
IF1
13605-005
Figure 5. IF1 Interface Schematic
IF2
13605-006
Figure 6. IF2 Interface Schematic
G
ND
13605-007
Figure 7. GND Interface Schematic
HMC520A Data Sheet
Rev. A | Page 6 of 32
TYPICAL PERFORMANCE CHARACTERISTICS
DOWNCONVERTER PERFORMANCE: IF = 100 MHz, LOWER SIDEBAND (HIGH-SIDE LO)
Data taken as an image reject mixer with external 9 hybrid at the IF ports, LO = 15 dBm, unless otherwise noted.
0
–20
–15
–10
–5
5678910 11
CONVE RS IO N GAIN ( dB)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-008
Figure 8. Conversion Gain vs. RF Frequency at Various Temperatures
50
0
20
10
30
40
5678910 11
IM AGE REJE CTI O N ( dBc)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-009
Figure 9. Image Rejection vs. RF Frequency at Various Temperatures
25
0
10
5
15
20
5678910 11
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-010
Figure 10. Input IP3 vs. RF Frequency at Various Temperatures
5678910 11
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
0
–20
–15
–10
–5
CONVE RS IO N GAIN ( dB)
13605-011
Figure 11. Conversion Gain vs. RF Frequency at Various LO Powers, TA = 25°C
50
0
20
10
30
40
5678910 11
IM AGE REJE CTI O N ( dBc)
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-012
Figure 12. Image Rejection vs. RF Frequency at Various LO Powers,
TA = 25°C
25
0
10
5
15
20
5678910 11
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-013
Figure 13. Input IP3 vs. RF Frequency at Various LO Powers,
TA = 25°C
Data Sheet HMC520A
Rev. A | Page 7 of 32
20
0
5
10
15
5678910 11
NOISE FIGURE (dB)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-014
Figure 14. Noise Figure vs. RF Frequency at Various Temperatures
20
0
8
4
12
16
5678910 11
INPUT P1dB (dBm)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-015
Figure 15. Input P1dB vs. RF Frequency at Various Temperatures
5678910 11
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
20
0
5
10
15
NOISE FIGURE (dB)
13605-016
Figure 16. Noise Figure vs. RF Frequency at Various LO Powers,
TA = 25°C
20
0
8
4
12
16
5678910 11
INPUT P1dB (dBm)
RF FREQ UE NCY ( GHz)
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-017
Figure 17. Input P1dB vs. RF Frequency at Various LO Powers,
TA = 25°C
HMC520A Data Sheet
Rev. A | Page 8 of 32
DOWNCONVERTER PERFORMANCE: IF = 100 MHz, UPPER SIDEBAND (LOW-SIDE LO)
Data taken as an image reject mixer with external 90° hybrid at the IF ports, LO = 15 dBm, unless otherwise noted.
0
–20
–15
–10
–5
5678910 11
CONVE RS IO N GAIN ( dB)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-018
Figure 18. Conversion Gain vs. RF Frequency at Various Temperatures
50
0
20
10
30
40
5678910 11
IM AGE REJE CTI O N ( dBc)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-019
Figure 19. Image Rejection vs. RF Frequency at Various Temperatures
25
0
10
5
15
20
5678910 11
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-020
Figure 20. Input IP3 vs. RF Frequency at Various Temperatures
5678910 11
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
0
–20
–15
–10
–5
CONVE RS IO N GAIN ( dB)
13605-021
Figure 21. Conversion Gain vs. RF Frequency at Various LO Powers, TA = 25°C
50
0
20
10
30
40
5678910 11
IM AGE REJE CTI O N ( dBc)
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-022
Figure 22. Image Rejection vs. RF Frequency at Various LO Powers,
TA = 25°C
25
0
10
5
15
20
5678910 11
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-023
Figure 23. Input IP3 vs. RF Frequency at Various LO Powers,
TA = 25°C
Data Sheet HMC520A
Rev. A | Page 9 of 32
20
0
5
10
15
5678910 11
NOISE FIGURE (dB)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-024
Figure 24. Noise Figure vs. RF Frequency at Various Temperatures
20
0
8
4
12
16
5678910 11
INPUT P1dB (dBm)
RF FREQ UE NCY ( GHz)
+85°C
+25°C
–40°C
13605-025
Figure 25. Input P1dB vs. RF Frequency at Various Temperatures
5678910 11
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
20
0
5
10
15
NOISE FIGURE (dB)
13605-026
Figure 26. Noise Figure vs. RF Frequency at Various LO Powers,
TA = 25°C
20
0
8
4
12
16
5678910 11
INPUT P1dB (dBm)
RF FREQ UE NCY ( GHz)
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-027
Figure 27. Input P1dB vs. RF Frequency at Various LO Powers,
TA = 25°C
HMC520A Data Sheet
Rev. A | Page 10 of 32
DOWNCONVERTER PERFORMANCE: IF = 1500 MHz, LOWER SIDEBAND (HIGH-SIDE LO)
Data taken as an image reject mixer with external 90° hybrid at the IF ports, LO = 15 dBm, unless otherwise noted.
0
–20
–15
–10
–5
5678910 11
CONVE RS IO N GAIN ( dB)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-028
Figure 28. Conversion Gain vs. RF Frequency at Various Temperatures
50
0
20
10
30
40
5678910 11
IM AGE REJE CTI O N ( dBc)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-029
Figure 29. Image Rejection vs. RF Frequency at Various Temperatures
25
0
10
5
15
20
5678910 11
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-030
Figure 30. Input IP3 vs. RF Frequency at Various Temperatures
5678910 11
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
0
–20
–15
–10
–5
CONVE RS IO N GAIN ( dB)
13605-031
Figure 31. Conversion Gain vs. RF Frequency at Various LO Powers, TA = 25°C
50
0
20
10
30
40
5678910 11
IM AGE REJE CTI O N ( dBc)
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-032
Figure 32. Image Rejection vs. RF Frequency at Various LO Powers,
TA = 25°C
25
0
10
5
15
20
5678910 11
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-033
Figure 33. Input IP3 vs. RF Frequency at Various LO Powers,
TA = 25°C
Data Sheet HMC520A
Rev. A | Page 11 of 32
20
0
5
10
15
5678910 11
NOISE FIGURE (dB)
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-034
Figure 34. Noise Figure vs. RF Frequency at Various LO Powers,
TA = 25°C
20
0
8
4
12
16
5678910 11
INPUT P1dB (dBm)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-035
Figure 35. Input P1dB vs. RF Frequency at Various Temperatures
HMC520A Data Sheet
Rev. A | Page 12 of 32
DOWNCONVERTER PERFORMANCE: IF = 1500 MHz, UPPER SIDEBAND (LOW-SIDE LO)
Data taken as an image reject mixer with external 90° hybrid at the IF ports, LO = 15 dBm, unless otherwise noted.
0
–20
–15
–10
–5
5678910 11
CONVE RS IO N GAIN ( dB)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-036
Figure 36. Conversion Gain vs. RF Frequency at Various Temperatures
50
0
20
10
30
40
5678910 11
IM AGE REJE CTI O N ( dBc)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-037
Figure 37. Image Rejection vs. RF Frequency at Various Temperatures
30
25
0
10
5
15
20
5678910 11
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
13605-038
Figure 38. Input IP3 vs. RF Frequency at Various Temperatures
5678910 11
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
0
–20
–15
–10
–5
CONVE RS IO N GAIN ( dB)
13605-039
Figure 39. Conversion Gain vs. RF Frequency at Various LO Powers, TA = 25°C
50
0
20
10
30
40
5678910 11
IM AGE REJE CTI O N ( dBc)
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-040
Figure 40. Image Rejection vs. RF Frequency at Various LO Powers
30
25
0
10
5
15
20
56 7 8 9 10 11
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-041
Figure 41. Input IP3 vs. RF Frequency at Various LO Powers,
TA = 25°C
Data Sheet HMC520A
Rev. A | Page 13 of 32
20
0
5
10
15
5678910 11
NOISE FIGURE (dB)
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-042
Figure 42. Noise Figure vs. RF Frequency at Various LO Powers,
TA = 25°C
20
0
8
4
12
16
5678910 11
INPUT P1dB (dBm)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-043
Figure 43. Input P1dB vs. RF Frequency at Various Temperatures
HMC520A Data Sheet
Rev. A | Page 14 of 32
DOWNCONVERTER PERFORMANCE: IF = 3500 MHz, LOWER SIDEBAND (HIGH-SIDE LO)
Data taken as an image reject mixer with external 90° hybrid at the IF ports, LO = 15 dBm, unless otherwise noted.
0
–20
–15
–10
–5
5678910 11
CONVE RS IO N GAIN ( dB)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
13605-044
Figure 44. Conversion Gain vs. RF Frequency at Various Temperatures
50
0
20
10
30
40
5678910 11
IM AGE REJE CTI O N ( dBc)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-045
Figure 45. Image Rejection vs. RF Frequency at Various Temperatures
30
25
0
10
5
15
20
5678910 11
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-046
Figure 46. Input IP3 vs. RF Frequency at Various Temperatures
5678910 11
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
0
–20
–15
–10
–5
CONVE RS IO N GAIN ( dB)
13605-047
Figure 47. Conversion Gain vs. RF Frequency at Various LO Powers, TA = 25°C
50
0
20
10
30
40
5678910 11
IM AGE REJE CTI O N ( dBc)
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-048
Figure 48. Image Rejection vs. RF Frequency at Various LO Powers,
TA = 25°C
30
25
0
10
5
15
20
5678910 11
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-049
Figure 49. Input IP3 vs. RF Frequency at Various LO Powers,
TA = 25°C
Data Sheet HMC520A
Rev. A | Page 15 of 32
35
30
25
0
10
5
15
20
5678910 11
NOISE FIGURE (dB)
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-050
Figure 50. Noise Figure vs. RF Frequency at Various LO Powers,
TA = 25°C
20
0
8
4
12
16
5678910 11
INPUT P1dB (dBm)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-051
Figure 51. Input P1dB vs. RF Frequency at Various Temperatures
HMC520A Data Sheet
Rev. A | Page 16 of 32
DOWNCONVERTER PERFORMANCE: IF = 3500 MHz, UPPER SIDEBAND (LOW-SIDE LO)
Data taken as an image reject mixer with external 90° hybrid at the IF ports, LO = 15 dBm, unless otherwise noted.
0
–20
–15
–10
–5
5 6 7 8 9 10 11
CONVE RS IO N GAIN ( dB)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-052
Figure 52. Conversion Gain vs. RF Frequency at Various Temperatures
50
0
20
10
30
40
100
70
60
80
90
5 6 78 9 10 11
IM AGE REJE CTI ON (d Bc)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
13605-053
Figure 53. Image Rejection vs. RF Frequency at Various Temperatures
30
25
–5
0
10
5
15
20
5678910 11
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-054
Figure 54. Input IP3 vs. RF Frequency at Various Temperatures
5 6 7 8 9 10 11
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
0
–20
–15
–10
–5
CONVE RS IO N GAIN ( dB)
13605-055
Figure 55. Conversion Gain vs. RF Frequency at Various LO Powers, TA = 25°C
50
0
20
10
30
40
100
70
60
80
90
5678910 11
IM AGE REJE CTI ON (d Bc)
RF FREQ UE NCY ( GHz)
LO = 19dBm
LO = 17dBm
LO = 15dBm
LO = 13dBm
13605-056
Figure 56. Image Rejection vs. RF Frequency at Various LO Powers
30
25
–5
0
10
5
15
20
5 6 7 8 9 10 11
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-057
Figure 57. Input IP3 vs. RF Frequency at Various LO Powers,
TA = 25°C
Data Sheet HMC520A
Rev. A | Page 17 of 32
20
–4
0
8
4
12
16
5 6 7 8 9 10 11
INPUT P1dB (dBm)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-058
Figure 58. Input P1dB vs. RF Frequency at Various Temperatures
HMC520A Data Sheet
Rev. A | Page 18 of 32
UPCONVERTER PERFORMANCE: IF INPUT FREQUENCY (IFIN) = 100 MHz, LOWER SIDEBAND (HIGH-SIDE LO)
Data taken as single sideband upconverter with external 90° hybrid at the IF ports, LO = 15 dBm, unless otherwise noted.
0
–20
–15
–10
–5
5678910 11
CONVE RS IO N GAIN ( dB)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-059
Figure 59. Conversion Gain vs. RF Frequency at Various Temperatures
0
–50
–30
–40
–20
–10
5678910 11
SIDE BAND RE JE CTI ON (d Bc)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-060
Figure 60. Sideband Rejection vs. RF Frequency at Various Temperatures
25
0
10
5
15
20
5678910 11
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-061
Figure 61. Input IP3 vs. RF Frequency at Various Temperature
5678910 11
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
0
–20
–15
–10
–5
CONVE RS IO N GAIN ( dB)
13605-062
Figure 62. Conversion Gain vs. RF Frequency at Various LO Powers,
TA = 25°C
0
–50
–30
–40
–20
–10
5678910 11
SIDE BAND RE JE CTI ON (d Bc)
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-063
Figure 63. Sideband Rejection vs. RF Frequency at Various LO Powers,
TA = 25°C
25
0
10
5
15
20
5678910 11
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-064
Figure 64. Input IP3 vs. RF Frequency at Various LO Powers,
TA = 25°C
Data Sheet HMC520A
Rev. A | Page 19 of 32
AMPLITUDE AND PHASE BALANCE DOWNCONVERTER: IF = 100 MHz, LOWER SIDEBAND (HIGH-SIDE LO)
Data taken at LO = 15 dBm, unless otherwise noted.
1.0
–1.0
–0.2
–0.6
0.2
0.6
0.8
–0.4
–0.8
0
0.4
5678910 11
AMPLITUDE BALANCE (dB)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-065
Figure 65. Amplitude Balance vs. RF Frequency at Various Temperatures
15
–15
–5
5
–10
0
10
567 8 9 10 11
PHASE BALANCE ( Degrees)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-066
Figure 66. Phase Balance vs. RF Frequency at Various Temperatures
1.0
–1.0
–0.2
–0.6
0.2
0.6
5 6 7 8 9 10 11
AMPLITUDE BALANCE (dB)
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-067
Figure 67. Amplitude Balance vs. RF Frequency at Various LO Powers,
TA = 25°C
15
–15
–5
5
–10
0
10
5 6 7 8 9 10 11
PHASE BALANCE ( Degrees)
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-068
Figure 68. Phase Balance vs. RF Frequency at Various LO Powers,
TA = 25°C
HMC520A Data Sheet
Rev. A | Page 20 of 32
AMPLITUDE AND PHASE BALANCE DOWNCONVERTER: IF = 1500 MHz, LOWER SIDEBAND (HIGH-SIDE LO)
Data taken at LO = 15 dBm, unless otherwise noted.
3
–3
–1
1
–2
0
2
5 6 7 8 9 10 11
AMPLITUDE BALANCE (dB)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-069
Figure 69. Amplitude Balance vs. RF Frequency at Various Temperatures
15
–15
–5
5
–10
0
10
567 8 9 10 11
PHASE BALANCE ( Degrees)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-070
Figure 70. Phase Balance vs. RF Frequency at Various Temperatures
3
–3
–1
1
–2
0
2
5 6 7 8 9 10 11
AMPLITUDE BALANCE (dB)
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-071
Figure 71. Amplitude Balance vs. RF Frequency at Various LO Powers,
TA = 25°C
15
–15
–5
5
–10
0
10
5 6 7 8 9 10 11
PHASE BALANCE ( Degrees)
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-072
Figure 72. Phase Balance vs. RF Frequency at Various LO Powers,
TA = 25°C
Data Sheet HMC520A
Rev. A | Page 21 of 32
AMPLITUDE AND PHASE BALANCE DOWNCONVERTER: IF = 3500 MHz, LOWER SIDEBAND (HIGH-SIDE LO)
Data taken at LO = 15 dBm, unless otherwise noted.
5
3
4
–5
–3
–4
–1
1
–2
0
2
6.0 6.5 7.57.0 8.0 8.5 9.0 9.5 10.0
AMPLITUDE BALANCE (dB)
RF FREQ UE NCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
13605-073
Figure 73. Amplitude Balance vs. RF Frequency at Various Temperatures
30
–30
–10
10
–20
0
20
5678910 11
PHASE BALANCE ( Degrees)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-074
Figure 74. Phase Balance vs. RF Frequency at Various Temperatures
5
3
4
–5
–3
–4
–1
1
–2
0
2
6.0 6.5 7.57.0 8.0 8.5 9.0 9.5 10.0
AMPLITUDE BALANCE (dB)
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-075
Figure 75. Amplitude Balance vs. RF Frequency at Various LO Powers,
TA = 25°C
30
–30
–10
10
–20
0
20
5678910 11
PHASE BALANCE ( Degrees)
RF FREQ UE NCY ( GHz)
LO = 19d Bm
LO = 17d Bm
LO = 15d Bm
LO = 13d Bm
13605-076
Figure 76. Phase Balance vs. RF Frequency at Various LO Powers,
TA = 25°C
HMC520A Data Sheet
Rev. A | Page 22 of 32
IF BANDWIDTH, DOWNCONVERTER PERFORMANCE
Data taken as an image reject mixer with an external 90° hybrid, LO = 15 dBm, unless otherwise noted.
0
–20
–15
–10
–5
0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6
CONVE RS IO N GAIN ( dB)
IF FRE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
13605-077
Figure 77. Conversion Gain vs. IF Frequency at Various Temperatures,
Lower Sideband, LO = 10.5 GHz
0
–20
–15
–10
–5
0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6
CONVE RS IO N GAIN ( dB)
IF FRE QUENCY ( GHz)
T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
13605-078
Figure 78. Conversion Gain vs. IF Frequency at Various Temperatures,
Upper Sideband, LO = 8.5 GHz
Data Sheet HMC520A
Rev. A | Page 23 of 32
ISOLATION AND RETURN LOSS
70
0
30
20
50
10
40
60
5678910 11
ISOLATION (dB)
RF FREQ UE NCY ( GHz)
LO TO RF
LO TO IF1
LO TO IF2
RF TO IF1
RF TO IF2
13605-079
Figure 79. Isolation vs. RF Frequency at LO = 15 dBm, TA = 25°C
0
–30
–20
–15
–25
–10
–5
5 6 7 8 9 10 11
LO RETURN LOSS (dB)
LO FRE QUENCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-080
Figure 80. LO Return Loss vs. LO Frequency at Various Temperatures at
LO = 15 dBm
0
0.1 0.6 1.1 1.6 2.1 2.6 3.1 4.13.6
IF FRE QUENCY ( GHz)
0
–30
–20
–15
–25
–10
–5
IF RETURN LOSS (dB)
IF1
IF2 T
A
= +85°C
T
A
= +25°C
T
A
= –40° C
13605-081
Figure 81. IF Return Loss vs. IF Frequency at Various Temperatures,
LO = 8.5 GHz at 15 dBm
0
–30
–20
–15
–25
–10
–5
5678910 11
RF RETURN L OSS ( dB)
RF FREQ UE NCY ( GHz)
TA = +85°C
TA = +25°C
TA = –40° C
13605-082
Figure 82. RF Return Loss vs. RF Frequency at Various Temperatures,
LO = 8.5 GHz at 15 dBm
HMC520A Data Sheet
Rev. A | Page 24 of 32
SPURIOUS AND HARMONICS PERFORMANCE
LO harmonic isolation, LO = 15 dBm, all values are in dBc
measured below the input LO level at the RF port and are
positive, unless otherwise noted.
Table 5. NLO Spur at RF Output (RFOUT)
N × LO
LO Frequency (GHz) 1 2 3 4
5.5 49 33 52 66
6.5 43 37 63 52
7 43 43 55 55
7.5 44 55 52 61
8.5 43 59 69 62
9.5 42 61 62 65
10.5 42 72 56 61
M × N Spurious Output Performance, Downconverter,
Lower Sideband (High-Side LO), IF = 100 MHz, TA = 25°C
RF = 9400 MHz at −10 dBm, LO = 9500 MHz at 15 dBm, data
taken without external hybrid, and all values are in dBc measured
below the IF power level (M × RF) − (N × LO) and are positive,
unless otherwise noted.
N × LO
0 1 2 3 4 5
M × RF
0 0 −13 +31 +12 +39 +56
1 +31 0 +42 +60 +62 +50
2 +71 +57 +66 +58 +70 +60
3 +69 +70 +75 +67 +74 +71
4 +62 +68 +71 +75 +85 +74
5 +58 +61 +67 +71 +77 +85
M × N Spurious Output Performance, Downconverter,
Upper Sideband (Low-Side LO), IF = 100 MHz, TA = 25°C
RF = 7600 MHz at −10 dBm, LO = 7500 MHz at 15 dBm, data
taken without external hybrid, and all values are in dBc measured
below the IF power level (M × RF) − (N × LO) and are positive,
unless otherwise noted.
N × LO
0 1 2 3 4 5
M × RF
0 0 −10 +23 +29 +46 +35
1 +31 0 +36 +49 +68 +53
2 +73 +51 +76 +50 +75 +65
3 +68 +74 +78 +72 +78 +73
4 +68 +71 +71 +79 +87 +77
5 +62 +68 +70 +73 +77 +86
M × N Spurious Output Performance, Upconverter, Upper
Sideband (Low-Side LO), IFIN = 100 MHz at −10 dBm,
TA = 25°C
RFOUT = 7600 MHz, LO = 7500 MHz at 15 dBm, data taken
without external hybrid, and all values are in dBc measured
below the RFOUT power level (M × IFIN) − (N × LO) and are
positive, unless otherwise noted.
N × LO
0 1 2 3 4 5
M × IF
0 0 6 26 24 29 42
1 78 0 24 30 56 42
2 89 53 71 67 62 58
3 88 65 73 67 64 60
4 88 76 71 66 64 58
5 86 77 72 68 63 59
M × N Spurious Output Performance, Upconverter, Lower
Sideband (High-Side LO), IFIN = 100 MHz at −10 dBm,
TA = 25°C
RFOUT = 9400 MHz, LO = 9500 MHz at 15 dBm, data taken
without external hybrid, and all values are in dBc measured
below the RFOUT power level (M × IFIN) − (N × LO) and are
positive, unless otherwise noted.
N × LO
0 1 2 3 4 5
M × IF
0 0 8 21 17 26 35
1 79 0 25 48 54 37
2 87 55 47 57 56 59
3 87 60 74 72 68 61
4 86 77 73 72 66 61
5 86 78 74 72 67 60
Data Sheet HMC520A
Rev. A | Page 25 of 32
THEORY OF OPERATION
The HMC520A is a GaAs, MMIC, I/Q mixer in a 24-terminal,
RoHS compliant, ceramic LCC package and operates over the
−40°C to +85°C temperature range. The EV1HMC520ALC4
evaluation board is also available from Analog Devices, Inc. The
HMC520A is a passive, wideband, I/Q MMIC mixer that can be
used as either an image reject mixer for receiver operations or as a
single sideband upconverter for transmitter operations. The mixer
uses two standard double balanced mixer cells and a 90° hybrid
fabricated in the GaAs, MESFET process.
With an RF and an LO input frequency range of 6 GHz to 10 GHz
and an IF frequency range of dc to 3.5 GHz, the HMC520A is ideal
for applications requiring a wide frequency range, excellent RF
performance, a simple design with fewer components, and a
small PCB footprint. One HMC520A can replace multiple
narrow-band mixers in a design. The HMC520A eliminates the
need for wire bonding, allowing the use of the surface-mount
manufacturing techniques.
The inherent I/Q architecture of the HMC520A offers excellent
image rejection and thereby eliminates the need for expensive
filtering for unwanted sidebands. The double balanced architecture
of the mixer also provides excellent LO to RF isolation and LO to IF
isolation, and this architecture reduces the effect of LO leakage
to ensure signal integrity. Because the HMC520A is a passive
mixer, the HMC520A does not require any dc power sources.
The HMC520A offers a lower noise figure compared to an
active mixer, ensuring superior dynamic range for high
performance and precision applications.
For both upconversion and downconversion, an external 90°
hybrid is required. See the Applications Information section for
details on interfacing with this external 90° hybrid.
HMC520A Data Sheet
Rev. A | Page 26 of 32
APPLICATIONS INFORMATION
Figure 83 shows the typical application circuit for the HMC520A.
To select the appropriate sideband, an external 90° hybrid is
needed. For applications not requiring operation to dc, use an
off chip dc blocking capacitor. For applications that require the
LO signal at the output to be suppressed, use a bias tee or RF
feed as shown in Figure 83. Ensure that the source or sink
current used for LO suppression is <12 mA for each IF port to
prevent damage to the device. The common-mode voltage for
each IF port is 0 V.
To select the upper sideband when using as an upconverter,
connect the IF1 pin to the 90° port of the hybrid and connect
the IF2 pin to the 0° port of the hybrid. To select the lower
sideband, connect the IF1 pin to the 0° port of the hybrid and
connect the IF2 pin to the 90° port of the hybrid. The input is
from the sum port of the hybrid, and the difference port is 50 Ω
terminated.
To select the upper sideband (low-side LO) when using as a
downconverter, connect the IF1 pin to the 0° port of the hybrid
and connect the IF2 pin to the 90° port of the hybrid. To select
the lower sideband (high-side LO), connect the IF1 pin to the
90° port of the hybrid and connect the IF2 pin to the 0° port of
the hybrid. The output is from the sum port of the hybrid, and
the difference port is 50 Ω terminated.
13605-084
13
1
3
4
2
7
5
6
14
15
16
17
18
90°
HYBRID
RF LO
8
9
10
11
1219
IF1 IF2
20
21
22
23
24
50IF
SUPPLY
FOR IF1
SUPPLY
FOR IF2
BIAS TEE/
DC FEED FOR IF2
BIAS TEE/
DC FEED FOR IF1 DC BLOCKING
CAPACITORS
EXTERNAL
90° HYBRID
NOTES
1. DASHED SECTIONS ARE OPTIONAL AND MEANT FOR LO NULLING.
Figure 83. Typical Application Circuit
PERFORMANCE TO 13 GHz
This section provides test results at a higher frequency to
13 GHz. Board, traces, and connector losses are not de-embedded
for all measurements. This performance is typical, though not
guaranteed. All measurements were made under the following
conditions: LO = 15 dBm, IF = 1.5 GHz, RF = −10 dBm, and
TA = 25°C, with an external 90° IF hybrid at the IF ports, unless
otherwise noted.
0
–20
–19
–18
–17
–16
–15
–14
–13
–12
–11
–10
–9
–8
–7
–6
–5
–4
–3
–2
–1
6789 1310 11 12
CONVERSION GAIN (dB)
RF FREQUENCY (GHz)
13605-184
Figure 84. Conversion Gain vs. RF Frequency, Downconverter,
Lower Sideband (High-Side LO), IF = 1.5 GHz
40
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
6789 1310 11 12
IMAGE REJECTION (dBc)
RF FREQUENCY (GHz)
13605-185
Figure 85. Image Rejection vs. RF Frequency, Downconverter,
Lower Sideband (High-Side LO), IF = 1.5 GHz
20
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
6789 1310 11 12
INPUT IP3 (dBm)
RF FREQUENCY (GHz)
13605-186
Figure 86. Input IP3 vs. RF Frequency, Downconverter,
Lower Sideband (High-Side LO), IF = 1.5 GHz
Data Sheet HMC520A
Rev. A | Page 27 of 32
21
20
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
6789 1310 11 12
INPUT P1dB (dBm)
RF FREQ UE NCY ( GHz)
13605-187
Figure 87. Input P1dB vs. RF Frequency, Downconverter,
Lower Sideband (High-Side LO), IF = 1.5 GHz
0
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
6789 1310 11 12
CONVE RS IO N GAIN ( dB)
RF FREQ UE NCY ( GHz)
13605-188
Figure 88. Conversion Gain vs. RF Frequency, Downconverter,
Upper Sideband (High-Side LO), IF = 1.5 GHz
40
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
6789 1310 11 12
IM AGE REJE CTI O N ( dBc)
RF FREQ UE NCY ( GHz)
13605-189
Figure 89. Image Rejection vs. RF Frequency, Downconverter,
Upper Sideband (High-Side LO), IF = 1.5 GHz
30
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
6789 1310 11 12
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
13605-190
Figure 90. Input IP3 vs. RF Frequency, Downconverter,
Upper Sideband (High-Side LO), IF = 1.5 GHz
20
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
6789 1310 11 12
INPUT P1dB (dBm)
RF FREQ UE NCY ( GHz)
13605-191
Figure 91. Input P1dB vs. RF Frequency, Downconverter,
Upper Sideband (High-Side LO), IF = 1.5 GHz
80
0
10
20
30
40
50
60
70
56789 1310 11 12
ISOLATION (dBc)
RF FREQ UE NCY ( GHz)
LO TO IF1
LO TO IF2
LO TO RF
13605-192
Figure 92. Isolation vs. RF Frequency, LO to RF and LO to IFx
HMC520A Data Sheet
Rev. A | Page 28 of 32
70
0
10
20
30
40
50
60
6789 1310 11 12
ISOLATION (dBc)
RF FREQ UE NCY ( GHz)
RF TO IF1
RF TO IF2
13605-193
Figure 93. Isolation vs. RF Frequency, RF to INx
0
–45
–40
–35
–30
–25
–20
–15
–10
–5
6 7 8 9 1310 11 12
RF RE TURN LOSS ( dB)
RF FREQ UE NCY ( GHz)
13605-194
Figure 94. RF Return Loss vs. RF Frequency
0
–32
–30
–28
–26
–24
–22
–20
–18
–16
–14
–12
–10
–8
–6
–4
–2
6 7 8 9 1310 11 12
LO RETURN LOSS (dB)
LO FRE QUENCY ( GHz)
13605-195
Figure 95. LO Return Loss vs. RF Frequency
3.1 4.13.6
0
–25
–20
–15
–10
–5
0.1 0.6 1.1 1.6 4.62.1 2.6
IF RETURN LOSS (dB)
RF FREQ UE NCY ( GHz)
IF1
IF2
13605-196
Figure 96. IF Return Loss vs. RF Frequency
0
–16
–1
–2
–3
–4
–5
–6
–7
–8
–9
–10
–11
–12
–13
–14
–15
6789 1310 11 12
CONVE RS IO N GAIN ( dB)
RF FREQ UE NCY ( GHz)
13605-197
Figure 97. Conversion Gain vs. RF Frequency, Upconverter,
Lower Sideband, IF = 1.5 GHz, LO Drive = 15 dBm
0
–30
–2
–4
–6
–8
–10
–12
–14
–16
–18
–20
–22
–24
–26
–28
6789 1310 11 12
SIDE BAND RE JE CTI ON (d Bc)
RF FREQ UE NCY ( GHz)
13605-198
Figure 98. Sideband Rejection vs. RF Frequency, Upconverter,
Lower Sideband, IF = 1.5 GHz, LO Drive = 15 dBm
Data Sheet HMC520A
Rev. A | Page 29 of 32
30
0
28
26
24
22
20
18
16
14
12
10
8
6
4
2
6789 1310 11 12
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
13605-199
Figure 99. Input IP3 vs. RF Frequency, Upconverter,
Lower Sideband, IF = 1.5 GHz, LO Drive = 15 dBm
20
0
18
16
14
12
10
8
6
4
2
6789 1310 11 12
INPUT P1dB (dBm)
RF FREQ UE NCY ( GHz)
13605-200
Figure 100. Input P1dB vs. RF Frequency, Upconverter,
Lower Sideband, IF = 1.5 GHz, LO Drive = 15 dBm
0
–20
–18
–14
–16
–12
–10
–8
–6
–4
–2
6789 1310 11 12
CONVE RS IO N GAIN ( dB)
RF FREQ UE NCY ( GHz)
13605-201
Figure 101. Conversion Gain vs. RF Frequency, Upconverter,
Upper Sideband, IF = 1.5 GHz, LO Drive = 15 dBm
0
–52
–48
–28
–32
–36
–40
–44
–24
–20
–16
–12
–8
–4
6789 1310 11 12
SIDE BAND RE JE CTI ON (d Bc)
RF FREQ UE NCY ( GHz)
13605-202
Figure 102. Sideband Rejection vs. RF Frequency, Upconverter,
Upper Sideband, IF = 1.5 GHz, LO Drive = 15 dBm
30
0
28
26
24
22
20
18
16
14
12
10
8
6
4
2
6789 1310 11 12
INPUT I P 3 ( dBm)
RF FREQ UE NCY ( GHz)
13605-203
Figure 103. Input IP3 vs. RF Frequency, Upconverter,
Upper Sideband, IF = 1.5 GHz, LO Drive = 15 dBm
20
0
18
16
14
12
10
8
6
4
2
6789 1310 11 12
INPUT P1dB (dBm)
RF FREQ UE NCY ( GHz)
13605-204
Figure 104. Input P1dB vs. RF Frequency, Upconverter,
Upper Sideband, IF = 1.5 GHz, LO Drive = 15 dBm
HMC520A Data Sheet
Rev. A | Page 30 of 32
SOLDERING INFORMATION AND RECOMMENDED
LAND PATTERN
Figure 105 shows the recommended land pattern for the
HMC520A. The HMC520A is contained in a 24-terminal
ceramic LCC package, which has an exposed ground pad.
This pad is internally connected to the ground of the chip.
To minimize thermal impedance and ensure electrical
performance, solder the pad to the low impedance ground
plane on the PCB. To further reduce thermal impedance, stitch
the ground planes together on all layers under the pad with vias.
The land pattern on the EV1HMC520ALC4 evaluation board
provides a simulated thermal resistance (θJC) of 225°C / W.
.010" REF
.030"
MASK O P E NING .098" SQUARE M AS K OPENING
.020 × 45" CHAM FER FOR P IN 1
.106" SQUARE
GRO UND P AD
.116"
MASK
OPENING
PIN 1 .0197"
[0.50]
.034"
TYPICAL
VIA
SPACING
PAD SI ZE
.026" × .010"
ᶲ .010"
TYPICAL VIA
GRO UND P AD
SOLDERMASK .004" MASK/ME TAL O V E RLAP
.178" SQUARE
.010" MIN MAS K WIDTH
13605-135
Figure 105. Evaluation Board Land Pattern
Data Sheet HMC520A
Rev. A | Page 31 of 32
EVALUATION BOARD INFORMATION
The EV1HMC520ALC4 evaluation PCB used in the application
must use RF circuit design techniques. Signal lines must have
50impedance and connect the package ground leads and
exposed pad directly to the ground plane (see Figure 106). Use a
sufficient number of via holes to connect the top and bottom
ground planes. The evaluation circuit board shown in Figure 106 is
available from Analog Devices upon request.
13605-085
Figure 106. EV1HMC520ALC4 Evaluation PCB Top Layer
Table 6. Bill of Materials for the EV1HMC520ALC4 Evaluation PCB
Quantity Reference Designator Description Part Number
1 109996-1 PCB, EV1HMC520ALC41, 2 109996-1
2 J1, J2 (RF, LO) 2.92 mm Johnson SubMiniature Version A (SMA) connectors, SRI Connector Gage 104935
2 J3, J4 (IF1, IF2) Gold plated SMA, edge mount with 0.02 inch pin connectors, SMA connectors 105192
1 U1 Device under test, HMC520ALC4 HMC520ALC4
1Reference this number when ordering the evaluation board PCB.
2 Circuit Board Material: RO4350B™.
HMC520A Data Sheet
Rev. A | Page 32 of 32
OUTLINE DIMENSIONS
12
0.50
BSC
2.50 REF
BOT TOM VIEW
TOP VIEW
1
24
7
13
18 19
6
02-27-2017-B
0.36
0.30
0.24
EXPOSED
PAD
P
KG-004840
PIN 1
INDICATOR
4.05
3.90 SQ
3.75
3.10 BSC
FOR PROPER CONNECTI ON O F
THE EXPOSED PAD, REFER TO
THE P IN CO NFI GURATION AND
FUNCTION DES CRI P T I ONS
SECTION OF THIS DATA SHEET.
2.60
2.50 S Q
2.40
PIN 1
0.32
BSC
0.08
BSC
SI DE VI EW
1.00
0.90
0.80
SEATING
PLANE
Figure 107. 24-Terminal Ceramic Leadless Chip Carrier [LCC]
(E-24-1)
Dimensions shown in millimeters
ORDERING GUIDE
Model1 Temperature Range Package Description Package Option
HMC520ALC4 −40°C to +85°C 24-Terminal Ceramic Leadless Chip Carrier [LCC] E-24-1
HMC520ALC4TR −40°C to +85°C 24-Terminal Ceramic Leadless Chip Carrier [LCC] E-24-1
HMC520ALC4TR-R5 −40°C to +85°C 24-Terminal Ceramic Leadless Chip Carrier [LCC] E-24-1
EV1HMC520ALC4 Evaluation Board
1 The HMC520ALC4, the HMC520ALC4TR, and the HMC520ALC4TR-R5 are RoHS compliant parts.
©2017–2018 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D13605-0-6/18(A)