IDT™ / ICS™ VCXO JITTER ATTENUATOR/MULTIPLIER 11 ICS814252CKI-02 REV. A OCTOBER 5, 2007
ICS814252I-02
VCXO JITTER ATTENUATOR & FEMTOCLOCK™ MULTIPLIER PRELIMINARY
INPUTS:
CRYSTAL INPUTS
For applications not requiring the use of the crystal oscillator
input, both XTAL_IN and XTAL_OUT can be left floating. Though
not required, but for additional protection, a 1kΩ resistor can be
tied from XTAL_IN to ground.
CLK/nCLK INPUTS
For applications not requiring the use of the differential input,
both CLK and nCLK can be left floating. Though not required, but
for additional protection, a 1kΩ resistor can be tied from CLK to
ground.
LVCMOS CONTROL PINS
All control pins have internal pull-ups or pull-downs; additional
resistance is not required but can be added for additional
protection. A 1kΩ resistor can be used.
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS
OUTPUTS:
LVDS OUTPUTS
All unused LVDS output pairs can be either left floating or
terminated with 100Ω across. If they are left floating, we
recommend that there is no trace attached.
FIGURE 4. P.C.ASSEMBLY FOR EXPOSED PAD THERMAL RELEASE PATH –SIDE VIEW (DRAWING NOT TO SCALE)
VFQFN EPAD THERMAL RELEASE PATH
In order to maximize both the removal of heat from the package
and the electrical performance, a land pattern must be
incorporated on the Printed Circuit Board (PCB) within the footprint
of the package corresponding to the exposed metal pad or
exposed heat slug on the package, as shown in Figure 4. The
solderable area on the PCB, as defined by the solder mask, should
be at least the same size/shape as the exposed pad/slug area on
the package to maximize the thermal/electrical performance.
Sufficient clearance should be designed on the PCB between the
outer edges of the land pattern and the inner edges of pad pattern
for the leads to avoid any shorts.
While the land pattern on the PCB provides a means of heat
transfer and electrical grounding from the package to the board
through a solder joint, thermal vias are necessary to effectively
conduct from the surface of the PCB to the ground plane(s). The
land pattern must be connected to ground through these vias.
The vias act as “heat pipes”. The number of vias (i.e. “heat pipes”)
are application specific and dependent upon the package power
dissipation as well as electrical conductivity requirements. Thus,
thermal and electrical analysis and/or testing are recommended
to determine the minimum number needed. Maximum thermal
and electrical performance is achieved when an array of vias is
incorporated in the land pattern. It is recommended to use as
many vias connected to ground as possible. It is also
recommended that the via diameter should be 12 to 13mils (0.30
to 0.33mm) with 1oz copper via barrel plating. This is desirable to
avoid any solder wicking inside the via during the soldering process
which may result in voids in solder between the exposed pad/
slug and the thermal land. Precautions should be taken to
eliminate any solder voids between the exposed heat slug and
the land pattern. Note: These recommendations are to be used
as a guideline only. For further information, refer to the Application
Note on the Surface Mount Assembly of Amkor’s Thermally/
Electrically Enhance Leadfame Base Package, Amkor Technology.
SOLDERSOLDER PINPIN EXPOSED HEAT SLUG
PIN PAD PIN PADGROUND PLANE LAND PATTERN
(GROUND PAD)
THERMAL VIA