K
MAGNA
Yffiffi
8D645; 647
BD6a9;
651
SILICON
DARLINGTON
POWER TRANSISTORS
N-P-N
epitaxial
base transistors in monolithic
Darlington
circuit
for audio
output stages
and
general
amplifier
and switching
applications;f
O-22O
plastic
envelope.
P-N-P
complements are BD646,
8D648,
8D650
and
8D652.
OUICK
REFERENCE
DATA
Collector-base
voltage
(open
emitter)
Collector-emitter
voltage
(open
base)
Collector current
(peak
value)
Total
power
dissipation up
to Tmb
= 25
oC
Junction
temperature
D.C.
current
gain:
lg=0,5A;V6g=3V
lg=3,0A;Vgg=3V
Cut-off
frequency:
lC
= 3 A; Vgg = 3 V
VCAO max.
VCf
O max.
ICU max.
Ptot max.
T; max.
12
62,5
150
1900
750
50
V
V
A
W
oc
nFE tYP.
hre
fhfe typ. kHz
MECHANICAL
DATA
Fis. 1 TO-220A8.
Collector
connected
to mounting
base.
10,3
mox *; .*as,
t't
*l l*
Dimensions
in
mm
l-
+
3,5
mox
not tinn'ed
I-
1,3
mox
t2xl
Jr
I u,tt
f moxl
--i l1;
I
+
1
n
ll
+l r+-u'o
l+2,4
I
I
15,8
mox
I
I
+
I
I
+l
<-0,9mor (3x)
K
MAGNA
THffi
8D645;
647
8D649;
651
CIRCUIT
DIAGRAM
Fig.2
Rt typ. 4 kQ
R2 typ. 100
Q
RATINGS
Limiting values
in
accordance
with the
Absolute
Maximum
system
(lEc 134) 649 651
Collector-base voitage
(open
emitter)
Collector-emitter
voltage
(open
base)
Emitter-base voltage
(open
collector)
Collector
current
(d.c.
)
Collector
current
(peak
value)
Base current
(d.c.)
Total power
dissipation
up to T,.,..,g
= 25.oC
Storage temperatu
re
Junction
temperature
*
THERMAL
RESISTANCE
*
From
junction
to mounting
base
From
junction
to ambient
in
free
air
Vceo
VcEo
Ve
go
lg
lcnlt
t^
'El
Ptot
Trrg
.J
Rth
j-mb
Rth
j-a
max.
max.
max.
max.
max.
max.
max.
max.
V
V
V
A
A
mA
W
oc
oc
K/W
K/W
80
60
5
100
80
5
120
100
0
140
't20
5
I
12
150
62,5
-65 to + 150
150
2
70
Based
on
maximum
average
junction
temperature
in line
with
common industrial
practice.
The
resulting
higher
junction
temperature
of the
output
transistor
part
is taken
into account.
8D645;
8D649;
CHARACTERISTICS
T1
= 25 oC unless
otherwise
specified
Collector
cut-off
cu
rrent
lE
=
0;
VCSO
=
VCEOmax
lE =
0; VCB
= % VCBOmax;
Tj = ISO
oC
lB=0;VCE=%VCEO'."
Emitter
cut-off
current
lC=0;VEg=5V
D.C.
current gain
(note
1)
lg=0,5A;VgE=3y
lC= 3A;VgE=3y
lC= 8A;Vgg=3y
Base-emitter
voltage
(notes
1 and
2l
lC=3A;V66=3V
Saturation
voltages (note
1)
lC=3A;lg=12mA
lC=5A;lg=50mA
Diode
forward
voltaqe
lr=3A
Collector
capacitance
at
f = 1 MHz
lE=le=0;VCB=10V
Cut-off
frequency
lC=3A;VCE=3V
Turn-off
breakdown
energy
with inductive
load
-lBoif = 0; lCN4
=
4,5
A; tO
= 1
ms;
T = 100
ms;
see
Fig.
3
Small
signal
current
gain
lC=3A;VCe=3V;f=1MHz
Second
breakdown
collector
current
VCE=60V;tO=0,1
s
Switching
times
(see
Figs
4 and
5)
lcon
=
3 A; lgon
=
-lBoff = 12
mA
turn-on
time
turn-off
time
K
MAGNA
TEfr
lceo
lcso
lceo
lego
hre
hre
.
hre
' Vge
VCEsat
VcEsrt
VB
Esat
Vp
cc
fhfe
E(sn)
I
r't.
I
Itss)
5mA
typ. 1900
typ. 1800
2,5
V
tVp.
1,2
v
/c pF
tYP. 50 kHz
50 mJ
tvp. 50
1,04
A
1,0
gs
2,5 ps
5ps
10
ps
typ.
typ.
typ.
ton
toff
Notes
1.
JVleasured
under
pulse
conditions:
to < 3OO
1ts,
6 12%.
2.Vse
decreases
by
about
s,e
mvirpwt;i;;ri"Ji,"no.r",rrr.
K
MAGluA
TEG
8D645;
8D649: 647
651
qn
i6
tot \
| /o I
Fig.
3 Test
circuit for turn-off
breakdown
energy.
VtM = 12
V; Rg = 27O t2;.
tO=1ms;6=1o/o.
Fig.
4 Switching
times
waveforms.
1n
n
VCC = 10V
VtfU = 10
V
-VBB
= 4v
R1 = 56St
R2 =410O
R3 = 560 Ct
R4 = 3(.l
tr=tf = 15ns
tp = 10ps
T =500ps
Fig.
5 Switching
times
test
circuit.
5mH
ve
rt.
- oscilloscope
0,1o .. t
oscilloscope
Vcc
u'*-n n
0
-] l---l L-
--l
l* to I
l<- T *l
K
MAGNA
wffiffi
8D645;
8D649;
l02
tc
(At
'10-
1
ro-2
10
io2 vcE
(v
)
Fig.
6 Safe
Operating
ARea;
Tmb
= 25
oC
I Region
of permissible
d.c. operation.
ll Permissible
extension
for repetitive
pulse
operation.
(1) Ptot
ru" and Poeak
rnu*
lines.
(2)
Second-breakdown
limits
(independent
of temperature).
10
lcM-." 6=o,o n
tp=
'100
ps
lc..t tl
\\
(1) \1ms
I5
lr
2d.c.
\t
o
co
8D645;
647
8D649;
651
102
'r0-
?
100
P
tot -o"
("/o)
75
3
Zth
i-mb
(t</w)
(v)
1
tF
Fig. Ba Typical values fo'rward
voltage
of collector-emitter
diode
(see
Fig. 2)
at
Ti = 25
oC.
(At
102 VcE
(v)
Fig.
7 Safe Operating
ARea; T.6 = 25 oC.
I Region of permissible
d.c. operation.
|
| Permissible extension
for repetitive
pulse
operation.
(1) Ptot
.r" and Po.r;.
n.''u*
lines.
(2) Second-breakdown
limits
(independent
of temperature).
r ro^ r
I
mbt v,
Fi1r. B Power derating curve.
10-3 rc-2 10-l
Fig. 9 Pulse
power
rating
chart. @
ffi
ffi
3
iYx
D
l
I
1
I
.l
I
7
10-'
S.E.voltoge
multiplying foctor ot the la-o, level
-L
I
1
1
1
------t-----t--f-
--6=0,01 -0.05- {. +
+
I
\-'oi>
--_b
l\
r n ?1 1
0.5
-
I0.75 \=t
10?
102
M1
8D645;
647
8D649;
651
10-l102
l0-l to
(ms)
8D645 ,.r,r$
1 10 to (msl 102
Fig.
12 Second breakdown
current
multiplying
factor
at the ,l00
V level.
r0?
Fis. 10.
Ml
102
Ml
l0-
r4
ffiru
ffi
3
iYx
D
S.B.
current
multiplying
foctor ot the '100V
level
0,02 6Il
0,01 _Ll I
0,05 \\_Li.ll
0,1 {ul
ffi
o.2 J ||f \
0,33 rt+ \
0,5 Its\ \
0,75 Tflt \\
Tltf
S.B.current
multiplying
foctor ot the 60V level
I
lI
oI
0.0i 1
I\Il
*
0,2 >, \
I
0,3: lI
T1
itr -T
o,7l 1\--
S.ll,
current
multiplying
factor
at the 120
V level
1o2 to(msl
Fig.
13 Second
breakdown
current
multiplying
factor
at the 120
V level.
Fis.
1 1.
tp (ms) 102
8D645;
647
8D649;
651
o
LE50t
{v)
t+
typ
f,
VcEr"t
(v)
10
10-
I
lc
(A) 10 10-
1
2 vr. {v) 102 tg
(mA) 103
Tj = 25 oC.
F
ig. 14. 1 10
Fig. 17 Typical values collector-emittcr saturation
voltage
104
IE
103
104
'lfe
103
@
ffiTt
ffi
1o-l 1
Fig.
l6 Typical
d.c.
current
9ain.
VgE
= 3 y.
102 103 104
Small
signal current
gain
at lg = 3 A; Vgg
=
3 y.
3
Erc
D
t0
Fis. l8
I
1l
t-
'a
-
1A 24 5 o
I
H
ltl
t#
-\-
I
\
ITTI
I
L
| 272444.2
lyp
o(
I
125
ll
25oc
102
1o-
2rc
(Al 105
1111q.1
loo