MAX9672/MAX9673/MAX9674
10-Bit, Programmable Gamma Reference
Systems with MTP for TFT LCDs
10 ______________________________________________________________________________________
proper slave address followed by the register address
and then the data word. Each transmit sequence is
framed by a START (S) or REPEATED START (Sr) condi-
tion and a STOP (P) condition. Each byte is serially trans-
mitted to the MAX9672/MAX9673/MAX9674 as 8 bits and
is followed by an acknowledge clock pulse. A master
reading data from the MAX9672/MAX9673/MAX9674
transmit the proper slave address followed by a series of
nine SCL pulses. The MAX9672/MAX9673/MAX9674
transmit data on SDA in sync with the master-generated
SCL pulses. The master acknowledges receipt of each
byte of data. Each read sequence is framed by a START
or REPEATED START condition, a not acknowledge, and
a STOP condition. SDA operates as both an input and an
open-drain output. A pullup resistor, typically greater
than 500Ω, is required on the SDA bus. SCL operates as
only an input. A pullup resistor, typically greater than
500Ω, is required on SCL if there are multiple masters on
the bus, or if the master in a single-master system has an
open-drain SCL output. Series resistors in line with SDA
and SCL are optional. Series resistors protect the digital
inputs of the MAX9672/MAX9673/MAX9674 from high-
voltage spikes on the bus lines, and minimize crosstalk
and undershoot of the bus signals.
Bit Transfer
One data bit is transferred during each SCL cycle. The
data on SDA must remain stable during the high period
of the SCL pulse. Changes in SDA while SCL is high
are control signals (see the
START and STOP
Conditions
section). SDA and SCL idle high when the
I2C bus is not busy.
START and STOP Conditions
SDA and SCL idle high when the bus is not in use. A
master initiates communication by issuing a START con-
dition. A START condition is a high-to-low transition on
SDA with SCL high. A STOP condition is a low-to-high
transition on SDA while SCL is high (Figure 2). A START
condition from the master signals the beginning of a
transmission to the MAX9672/MAX9673/MAX9674. The
master terminates transmission, and frees the bus, by
issuing a STOP condition. The bus remains active if a
REPEATED START condition is generated instead of a
STOP condition.
Early STOP Conditions
The MAX9672/MAX9673/MAX9674 use a STOP condi-
tion at any point during data transmission except if the
STOP condition occurs in the same high pulse as a
START condition. For proper operation, do not send a
STOP condition during the same SCL high pulse as the
START condition.
Slave Address
The slave address is defined as the 7 most significant
bits (MSBs) followed by the read/write (R/W) bit. Set the
R/Wbit to 1 to configure the MAX9672/MAX9673/
MAX9674 to read mode. Set the R/Wbit to 0 to config-
ure the MAX9672/MAX9673/MAX9674 to write mode.
The address is the first byte of information sent to the
MAX9672/MAX9673/MAX9674 after the START condi-
tion. The MAX9672/MAX9673/MAX9674 slave address
is configured with A0. Table 1 shows the possible
addresses for the MAX9672/MAX9673/MAX9674.
Acknowledge
The acknowledge bit (ACK) is a clocked 9th bit that the
MAX9672/MAX9673/MAX9674 use to handshake
receipt of each byte of data when in write mode (see
Figure 3). The MAX9672/MAX9673/MAX9674 pull down
SDA during the entire master-generated ninth clock
pulse if the previous byte is successfully received.
Monitoring ACK allows for detection of unsuccessful
data transfers. An unsuccessful data transfer occurs if