LP3999
SNVS207E –JUNE 2003–REVISED MAY 2013
www.ti.com
APPLICATION HINTS
POWER DISSIPATION AND DEVICE OPERATION
The permissible power dissipation for any package is a measure of the capability of the device to pass heat from
the power source, the junctions of the IC, to the ultimate heat sink, the ambient environment. Thus the power
dissipation is dependent on the ambient temperature and the thermal resistance across the various interfaces
between the die and ambient air.
Re-stating the equation given in (1) in the electrical specification section, the allowable power dissipation for the
device in a given package can be calculated:
(1)
With a θJA = 255°C/W, the device in the DSBGA package returns a value of 392 mW with a maximum junction
temperature of 125°C.
The actual power dissipation across the device can be represented by the following equation:
PD= (VIN −VOUT) x IOUT. (2)
This establishes the relationship between the power dissipation allowed due to thermal consideration, the voltage
drop across the device, and the continuous current capability of the device. These two equations should be used
to determine the optimum operating conditions for the device in the application.
EXTERNAL CAPACITORS
In common with most regulators, the LP3999 requires external capacitors to ensure stable operation. The
LP3999 is specifically designed for portable applications requiring minimum board space and smallest
components. These capacitors must be correctly selected for good performance.
INPUT CAPACITOR
An input capacitor is required for stability. It is recommended that a 1.0 µF capacitor be connected between the
LP3999 input pin and ground (this capacitance value may be increased without limit).
This capacitor must be located a distance of not more than 1 cm from the input pin and returned to a clean
analogue ground. Any good quality ceramic, tantalum, or film capacitor may be used at the input.
Important: Tantalum capacitors can suffer catastrophic failures due to surge current when connected to a low-
impedance source of power (like a battery or a very large capacitor). If a tantalum capacitor is used at the input,
it must be ensured by the manufacturer to have a surge current rating sufficient for the application.
There are no requirements for the ESR (Equivalent Series Resistance) on the input capacitor, but tolerance and
temperature coefficient must be considered when selecting the capacitor to ensure the capacitance will remain ≅
1.0 µF over the entire operating temperature range.
OUTPUT CAPACITOR
The LP3999 is designed specifically to work with very small ceramic output capacitors. A ceramic capacitor
(dielectric types Z5U, Y5V or X7R) in the 1.0 [to 10 µF] range, and with ESR between 5 mΩto 500 mΩ, is
suitable in the LP3999 application circuit.
For this device the output capacitor should be connected between the VOUT pin and ground.
It may also be possible to use tantalum or film capacitors at the device output, VOUT, but these are not as
attractive for reasons of size and cost (see the section CAPACITOR CHARACTERISTICS).
The output capacitor must meet the requirement for the minimum value of capacitance and also have an ESR
value that is within the range 5 mΩto 500 mΩfor stability.
(1) In applications where high power dissipation and/or poor thermal resistance is present, the maximum ambient temperature may have to
be derated. Maximum ambient temperature (TA(max)) is dependant on the maximum operating junction temperature (TJ(max-op)), the
maximum power dissipation (PD(max)), and the junction to ambient thermal resistance in the application (θJA). This relationship is given
by:
TA(max) = TJ(max-op) −(PD(max) ×θJA).
10 Submit Documentation Feedback Copyright © 2003–2013, Texas Instruments Incorporated
Product Folder Links: LP3999