2009-12-22
Rev. 3.2 page 1
SPP21N50C3
SPI21N50C3, SPA21N50C3
Cool MOS™ Power Transistor VDS @ Tjmax 560 V
RDS(on) 0.19
ID21 A
Feature
New revolutionary high voltage technology
Worldwide best RDS(on) in TO 220
Ultra low gate charge
Periodic avalanche rated
Extreme dv/dtrated
Ultra low effective capacitances
Improved transconductance
PG-TO220FP P G-TO262 PG-TO220
123
Marking
21N50C3
21N50C3
21N50C3
Type Package Ordering Code
SPP21N50C3 PG-TO220 Q67040-S4565
SPI21N50C3 PG-TO262 Q67040-S4564
SPA21N50C3 PG-TO220FP SP000216364
Maximum Ratings
Parameter Symbol Value Unit
SPA
Continuous drain current
T
C
= 25 °C
T
C
= 100 °C
I
D
21
13.1
21
1)
13.1
1)
A
Pulsed drain current, t
p
limited by T
jmax
I
Dpuls
63 63 A
Avalanche energy, single pulse
I
D
=10A, V
DD
=50V
E
AS
690 690 mJ
Avalanche energy, repetitive t
AR
limited by T
jmax2)
I
D
=21A, V
DD
=50V
E
AR
11
Avalanche current, repetitive t
AR
limited by T
jmax
I
AR
21 21 A
Gate source voltage V
GS
±20 ±20 V
Gate source voltage AC (f >1Hz) V
GS
±30 ±30
Power dissipation,
T
C
= 25°C
P
tot
208 34.5 W
SPP_I
Operating and storage temperature T
j,
T
stg
-55...+150 °C
Reverse diode dv/dt
dv/dt 15
V/ns
7)
2009-12-22
Rev. 3.2 page 2
SPP21N50C3
SPI21N50C3, SPA21N50C3
Maximum Ratings
Parameter Symbol Value Unit
Drain Source voltage slope
VDS = 400 V, ID = 21 A, Tj = 125 °C
dv/dt50 V/ns
Thermal Characteristics
Parameter Symbol Values Unit
min. typ. max.
Thermal resistance, junction - case RthJC - - 0.6 K/W
Thermal resistance, junction - case, FullPAK RthJC_FP - - 3.6
Thermal resistance, junction - ambient, leaded RthJA - - 62
Thermal resistance, junction - ambient, FullPAK RthJA_FP - - 80
SMD version, device on PCB:
@ min. footprint
@ 6 cm2 cooling area 3)
RthJA
-
-
-
35
62
-
Soldering temperature, wavesoldering
1.6 mm (0.063 in.) from case for 10s 4)
Tsold - - 260 °C
Electrical Characteristics, at Tj=25°C unless otherwise specified
Parameter Symbol Conditions Values Unit
min. typ. max.
Drain-source breakdown voltage V(BR)DSS VGS=0V, ID=0.25mA 500 - - V
Drain-Source avalanche
breakdown voltage
V(BR)DS VGS=0V, ID=21A - 600 -
Gate threshold voltage VGS(th) ID=1000µA, VGS=VDS2.1 3 3.9
Zero gate voltage drain current IDSS VDS=500V, VGS=0V,
Tj=25°C
Tj=150°C
-
-
0.1
-
1
100
µA
Gate-source leakage current IGSS VGS=20V, VDS=0V - - 100 nA
Drain-source on-state resistance RDS(on) VGS=10V, ID=13.1A
Tj=25°C
Tj=150°C
-
-
0.16
0.54
0.19
-
Gate input resistance RGf=1MHz, open drain - 0.53 -
2009-12-22
Rev. 3.2 page 3
SPP21N50C3
SPI21N50C3, SPA21N50C3
Electrical Characteristics
Parameter Symbol Conditions Values Unit
min. typ. max.
Transconductance gfs VDS2*ID*RDS(on)max,
ID=13.1A
- 18 - S
Input capacitance Ciss VGS=0V, VDS=25V,
f=1MHz
- 2400 - pF
Output capacitance Coss - 1200 -
Reverse transfer capacitance Crss - 30 -
Effective output capacitance,5)
energy related
Co(er) VGS=0V, VDS=400V - 87 -
Effective output capacitance,6)
time related
Co(tr) - 181 -
Turn-on delay time td(on) VDD=380V, VGS=0/10V,
ID=21A,
RG=3.6
- 10 - ns
Rise time tr- 5 -
Turn-off delay time td(off) - 67 -
Fall time tf- 4.5 -
Gate Charge Characteristics
Gate to source charge Qgs VDD=380V, ID=21A - 10 - nC
Gate to drain charge Qgd - 50 -
Gate charge total QgVDD=380V, ID=21A,
VGS=0 to 10V
- 95 -
Gate plateau voltage V(plateau) VDD=380V, ID=21A - 5 - V
1Limited only by maximum temperature
2Repetitve avalanche causes additional power losses that can be calculated as PAV=EAR*f.
3Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70 µm thick) copper area for drain
connection. PCB is vertical without blown air.
4Soldering temperature for TO-263: 220°C, reflow
5Co(er) is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% VDSS.
6Co(tr) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
7ISD<=ID, di/dt<=200A/us, VDClink=400V, Vpeak<VBR, DSS, Tj<Tj,max.
Identical low-side and high-side switch.
2009-12-22
Rev. 3.2 page 4
SPP21N50C3
SPI21N50C3, SPA21N50C3
Electrical Characteristics
Parameter Symbol Conditions Values Unit
min. typ. max.
Inverse diode continuous
forward current
ISTC=25°C - - 21 A
Inverse diode direct current,
pulsed ISM - - 63
Inverse diode forward voltage VSD VGS=0V, IF=IS- 1 1.2 V
Reverse recovery time trr VR=380V, IF=IS ,
diF/dt=100A/µs
- 450 ns
Reverse recovery charge Qrr - 9 - µC
Peak reverse recovery current Irrm - 60 - A
Peak rate of fall of reverse
recovery current
dirr/dt Tj=25°C - 1200 - A/µs
Typical Transient Thermal Characteristics
Symbol Value Unit Symbol Value Unit
SPA SPA
Rth1 0.00769 0.00769 K/W Cth1 0.0003763 0.0003763 Ws/K
Rth2 0.015 0.015 Cth2 0.001411 0.001411
Rth3 0.029 0.029 Cth3 0.001931 0.001931
Rth4 0.114 0.16 Cth4 0.005297 0.005297
Rth5 0.136 0.319 Cth5 0.012 0.008659
Rth6 0.059 2.523 Cth6 0.091 0.412
SPP_I SPP_I
External Heatsink
TjTcase
Tamb
Cth1 Cth2
Rth1 Rth,n
Cth,n
Ptot (t)
720
2009-12-22
Rev. 3.2 page 5
SPP21N50C3
SPI21N50C3, SPA21N50C3
1 Power dissipation
Ptot = f(TC)
0 20 40 60 80 100 120 °C 160
TC
0
20
40
60
80
100
120
140
160
180
200
W
240 SPP21N50C3
Ptot
2 Power dissipation FullPAK
Ptot = f(TC)
0 20 40 60 80 100 120 °C 160
TC
0
5
10
15
20
25
W
35
Ptot
3 Safe operating area
ID= f ( VDS )
parameter : D = 0 , TC=25°C
10 010 110 210 3
V
VDS
-2
10
-1
10
0
10
1
10
2
10
A
ID
tp = 0.001 ms
tp = 0.01 ms
tp = 0.1 ms
tp = 1 ms
tp = 10 ms
DC
4 Safe operating area FullPAK
ID = f (VDS)
parameter: D = 0, TC = 25°C
10 010 110 210 3
V
VDS
-2
10
-1
10
0
10
1
10
2
10
A
ID
tp = 0.001 ms
tp = 0.01 ms
tp = 0.1 ms
tp = 1 ms
tp = 10 ms
DC
2009-12-22
Rev. 3.2 page 6
SPP21N50C3
SPI21N50C3, SPA21N50C3
5 Transient thermal impedance
ZthJC = f(tp)
parameter: D=tp/T
10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 0
s
tp
-4
10
-3
10
-2
10
-1
10
0
10
K/W
ZthJC
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
single pulse
6 Transient thermal impedance FullPAK
ZthJC = f(tp)
parameter: D = tp/t
10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 1
s
tp
-3
10
-2
10
-1
10
0
10
1
10
K/W
ZthJC
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
single pulse
7 Typ. output characteristic
ID = f (VDS); Tj=25°C
parameter: tp= 10 µs, VGS
0 5 10 15 V 25
VDS
0
10
20
30
40
50
A
70
ID
Vgs = 6V
Vgs = 5.5V
Vgs = 5V
Vgs = 4.5V
Vgs = 4V
Vgs = 20V
Vgs = 7V
Vgs = 6.5V
8 Typ. output characteristic
ID = f (VDS); Tj=150°C
parameter: tp= 10 µs, VGS
0 5 10 15 V 25
VDS
0
5
10
15
20
25
30
A
40
ID
Vgs = 5V
Vgs = 4.5V
Vgs = 4V
Vgs = 20V
Vgs = 7V
Vgs = 6V
Vgs = 5.5V
2009-12-22
Rev. 3.2 page 7
SPP21N50C3
SPI21N50C3, SPA21N50C3
9 Typ. drain-source on resistance
RDS(on)=f(ID)
parameter: Tj=150°C, VGS
0 5 10 15 20 25 30 A 40
ID
0.3
0.6
0.9
1.5
RDS(on)
Vgs = 4V
Vgs = 4.5V
Vgs = 5V
Vgs = 5.5V
Vgs = 6V
Vgs = 20V
10 Drain-source on-state resistance
RDS(on) = f(Tj)
parameter : ID = 13.1 A, VGS = 10 V
-60 -20 20 60 100 °C 180
Tj
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.1 SPP21N50C3
RDS(on)
typ
98%
11 Typ. transfer characteristics
ID= f ( VGS ); VDS 2 x ID x RDS(on)max
parameter: tp = 10 µs
0 2 4 6 V 10
VGS
0
10
20
30
40
50
A
70
ID
Tj = 150°C
Tj = 25°C
12 Typ. gate charge
VGS =f (QGate)
parameter: ID = 21 A pulsed
0 20 40 60 80 100 nC 140
QGate
0
2
4
6
8
10
12
V
16 SPP21N50C3
VGS
0,8 VDS max
DS max
V
0,2
2009-12-22
Rev. 3.2 page 8
SPP21N50C3
SPI21N50C3, SPA21N50C3
13 Forward characteristics of body diode
IF = f (VSD)
parameter: Tj , tp= 10 µs
0 0.4 0.8 1.2 1.6 2 2.4 V3
VSD
-1
10
0
10
1
10
2
10
A
SPP21N50C3
IF
Tj = 25 °C typ
Tj = 25 °C (98%)
Tj = 150 °C typ
Tj = 150 °C (98%)
14 Avalanche SOA
IAR = f (tAR)
par.: Tj 150 °C
10 -3 10 -2 10 -1 10 010 110 210 4
µs
tAR
0
5
10
A
20
IAR
Tj(Start)=25°C
Tj(Start)=125°C
15 Avalanche energy
EAS = f(Tj)
par.: ID = 10 A, VDD = 50 V
20 40 60 80 100 120 °C 160
Tj
0
50
100
150
200
250
300
350
400
450
500
550
600
mJ
750
EAS
16 Drain-source breakdown voltage
V(BR)DSS = f(Tj)
-60 -20 20 60 100 °C 180
Tj
450
460
470
480
490
500
510
520
530
540
550
560
570
V
600
SPP21N50C3
V(BR)DSS
2009-12-22
Rev. 3.1 page 9
SPP21N50C3
SPI21N50C3, SPA21N50C3
17 Avalanche power losses
PAR = f (f )
parameter: EAR=1mJ
10 410 510 6
Hz
f
0
100
200
300
W
500
PAR
18 Typ. capacitances
C = f(VDS)
parameter: VGS=0V, f=1 MHz
0 100 200 300 V 500
VDS
0
10
1
10
2
10
3
10
4
10
5
10
pF
C
Ciss
Coss
Crss
19 Typ. Coss stored energy
Eoss=f(VDS)
0 50 100 150 200 250 300 350 400 V 500
VDS
0
2
4
6
µJ
10
Eoss
2009-12-22
Rev. 3.2 page 10
SPP21N50C3
SPI21N50C3, SPA21N50C3
Definition of diodes switching characteristics
2009-12-22
Rev. 3.2 page 11
SPP21N50C3
SPI21N50C3, SPA21N50C3
PG-TO220-3-1, PG-TO220-3-21
SPP16N50C3
S
PI
16
N5
0C3
,
S
PA
16
N5
0C3
PG-TO220-3 (Fully isolated)
24
Dimensions in mm/ inches
Rev. 3.2 page 12 2009-12-22
2009-12-22
Rev. 3.2 page 13
SPP21N50C3
SPI21N50C3, SPA21N50C3
PG-TO262-3-1, PG-TO262-3-21 (I²-PAK)
2009-12-22
Rev. 3.2 page 14
SPP21N50C3
SPI21N50C3, SPA21N50C3
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2007 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of
conditions or characteristics. With respect to any examples or hints given herein, any typical
values stated herein and/or any information regarding the application of the device,
Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind,
including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please
contact the nearest Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information
on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with
the express written approval of Infineon Technologies, if a failure of such components can
reasonably be expected to cause the failure of that life-support device or system or to affect
the safety or effectiveness of that device or system. Life support devices or systems are
intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user
or other persons may be endangered.