w@ HARRIS 2N6790 N-Channel Enhancement-Mode August 1991 Power MOS Field-Effect Transistor Features Package TO-205AF * 3.5A, 200V BOTTOM VIEW * rDS(on) = 0.82 * SOA is Power-Dissipation Limited ; SOURCE GATE * Nanosecond Switching Speeds 0 Linear Transfer Characteristics 5) 5 * High Input Impedance DRAIN (CASE) Majority Carrier Device Description The 2N6790 is an n-channel enhancement-mode silicon-gate | Terminal Diagram power MOS field-effect transistor designed for applications such as switching regulators, switching converters, motor drivers, relay N-CHANNEL ENHANCEMENT MODE drivers, and drivers for high-power bipolar switching transistors < requiring high speed and low gate-drive power. This type can be D iW ul operated directly from integrated circuits. z2 8 <= The 2N6790 is supplied in the JEDEC TO-205AF (Low Profile <= TO-39) metal package. = i e Z a s Absolute Maximum Ratings (Tc = +25C) Unless Otherwise Specified 2N6790 UNITS Drain-Source Voltage ..... 0.0... cece ce eter teen eens Vos 200* v Drain-Gate Voltage (RGS = 20KN)... 2... eect eee eee VDGR 200* Vv Continuous Drain Current TE HF259C cece eect n een ene ene e bene Ip 3.5* A TE = F1009 0 ccc cee eect e etter ene tse eenes Ip 2.25* A Pulsed Drain Current. . -lpbM 14* A Gate-Source Voltage ..............4-- . V6s +20* v Continuous Source Current (Body Diode)... revel 3.5* A Pulse Source Current (Body Diode) (Note 2). 0.0... 0... c cece eee ence eee ISm 14* A Maximum Power Dissipation To = +259C (See Figure 14) 0.2... eee ee eee een eee 20* Ww Above Tc = +259C, Derate Linearly (See Figure 14) 0.16* W/9C Inductive Current, Clamped ................00c0 eee 14 A (L = 400pH) Operating and Storage Junction Temperature Range............ Ty, TSTG -55 to +150* oC Maximum Lead Temperature for Soldering ..........0ceeceeeeeeeneee Th 300* oC (0.063 (1.6mm) from case for 10s) *JEDEC registered values CAUTION: These devices are sensitive to electrostatic discharge. Proper 1.C. handling procedures should be followed. File Number 1 900.1 Copyright Harris Corporation 1991 4-59Specifications 2N6790 Electrical Characteristics @ Tc = 25C (Unless Otherwise Specified) est = 0.25 See Fig. 15 {MOSFET switching times are essentially independent of operating temperature.) Area = = 1 Thermal Resistance Junction-to-Case [ -~_[ - [625 [:cw] PinJA __ Junction-to-Ambient [| = [| 175 [ecrw | Free Air Operation Source-Drain Diode Switching Characteristics (Typical) ter Reverse Recovery Time 350 [ns] Ty = 180C, lp = 3.5A, dipidt = 100A/us QpR _ Reverse Recovered Charge 23 [ uC | Ty = 180C, Ip = 35A, dipidt = 100Alus Lton Forward Turn-on Time intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Ls + Lp. *JEDEC registered value aPulse Test: Pulse widih = 300us. Duty Cycle = 2% 80 us PULSE TEST Vg > Ipion) * 8oston) max Ty= 125C 1 Ty= 259C I 1 Ty = -559C Ip. DRAIN CURRENT (AMPERES) Ip, DRAIN CURRENT (AMPERES} oO 25 50 75 100 0 2 4 6 8 10 Vos. ORAIN-TO-SOUACE VOLTAGE (VOLTS) Vgs, GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 - Typical output characteristics. Fig. 2 - Typical transfer characteristics, 4-602N6790 30 80 us PULSE TEST GPERATION IN THIS AREA 20 IS LIMITED BY Apsion) a 3 10 a = Y aw a z , = = = 5 2 = 2 z 3 3 = 10 z << a & SET te = asec 2 = Ty = 1500C MAX, 0.2 Phuc = 6.25 KAW SINGLE PULSE 0.1 0.08 0 2 4 6 8 10 102 5 10 20 50 100 200 S00 Vg. ORAIN-TO-SOURCE VOLTAGE (VOLTS) Vos. ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 - Typical saturation characteristics. Fig. 4 - Maximum safe operating area. ny > 2 N-CHANNEL POWER MOSFETs L 0) : sla _.| 2 1. DUTY FACTOR, 0 = z . So a 2 Ss Ss SINGLE PULSE (TRANSIENT 2. PER UNIT BASE = Aine = 6.25 CEG. C/W. THERMAL IMPEDANCE} 3. Tym -To* Pom 2enueit) ZenJclt/ Rhye. NORMALIZED EFFECTIVE TRANSIENT THERMAL IMPEDANCE (PER UNIT) 0.01 10-5 2 5 10-4 2 5 30-3 2 5 yo-2 2 tart 2 5 10 2 5 10 1), SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 - Maximum effective transient thermal impedance, junction-to-case versus pulse duration. BO us PULSE TEST Vos >!oton) x Rosion) max y7 35C = 250C Ty = 259C Ty = 190C y= 1259C i gts. TRANSCONDUCT ANCE (SIEMENS) Ty= 18000 (or. REVERSE DRAIN CURRENT (AMPERES) Ty = 250 0 2 4 6 8 10 12 4 a 1 2 3 4 (nh, ORAIN CURRENT {AMPERES} Vgp. SOUACE-TO-DRAIN VOLTAGE iVOLTS} Fig. 6 - Typical transconductance versus drain current. Fig. 7 - Typical source-drain diode forward voltage. 4-61BVpsg, DRAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED) ~40 a 40 80 120 Ty, JUNCTION TEMPERATURE (C) 160 Fig. 8 - Breakdown voltage versus temperature. 1000 T T T ] , | | | Ves7o | 4} 4 Ee | : | 1=1MHe goo - i}... L Ging = gg + Cog, Cay SHORTED ~ : i Crss = Cog 1+ Coe Cgg 74 3 | Sows * Cie Coe Cye a 600 * = Cas + Ogg 2 ft Fe 3 < < 400 S 200 Fig. 10 - Typical capacitance versus drain-to-source ag Vs. GRAIN TO-SOURCE VOLTAGE tVOLTS} 50 voltage. a Vgg = 10v ow | 7 Vgg = 20V _ Rosign} ORAIN-TO-SOURCE ON RESISTANCE (OHMS} Ros(on) MEASURED WITH CURRENT PULSE OF 2.0 us DURATION. INITIAL Ty = 25C. (HEATING EFFECT OF 2.0 us PULSE IS MINIMAL ) 4 1 1 Fig. 12 - Typical on-resistance versus drain current. 5 10 15 Ip, DRAIN CURRENT (AMPERES) 20 2N6790 4-62 22 > = Vos* Ip = 2A Apion). DRAIN-TO-SOURCE ON RESISTANCE (NORMALIZED) 2 a 02 -40 Q 40 80 Ty, JUNCTION TEMPERATURE (C} 120 Fig. 9 - Typical normalized on-resistance versus temperature. Fig. Ip, DRAIN CURRENT (AMPERES) Vos = 40V | eI Vpg = 180V Vg, GATE-TO-SOURCE VOLTAGE (VOLTS) 0 4 8 12 Qy, TOTAL GATE CHARGE (at) 16 11 - Typical gate charge versus gate-to-source voltage. $0 75 Te, CASE TEMPERATURE {C} 100 125 150 Fig. 13 - Maximum drain current versus case temperature.2N6790 a 2 r < = z Q = = 8 3 = a = = a & a 20 40 60 a0 100 y20 140 Tc, CASE TEMPERATURE (9C) Fig. 14 - Power versus temperature derating curve. jrutsr WIDTH VGSton) +10V a a Wl We 2 20 <= ou = [o) a INPUT 50% 7A 90% Vastatt) OV INPUT PULSE NPUT PULSE RISE TIME FALL TIME uP Vos(oft} ; TEKTRONIX ouTPUT 801DA PULSE Oe Vosion) GEN : NOTES: WHEN MEASURING AISE TIME, Vggion) SHALL BE AS SPECIFIED ON THE INPUT WAVEFORM. WHEN MEASURING FALL TIME, Vggioft) SHALL BE SPECIFIED ON THE INPUT WAVEFORM. THE INPUT TRANSITION ANO ORAIN VOLTAGE RE- SPONSE DETECTOR SHALL HAVE RISE AND FALL RESPONSE TIMES SUCH THAT NOTES: DOUBLING THESE RESPONSES WILL NOT AFFECT THE RESULTS GREATER 1. LHOO63 CASE GROUNDED. THAN THE PRECISION OF MEASUREMENT. THE CURRENT SHALL BE SUFFI. 2. GROUNDED CONNECTIONS COMMON TO GROUND PLANE ON BOARD. CIENTLY SMALL SQ THAT DOUBLING IT DOES NOT AFFECT TESTS RESULTS 3. PULSE WIDTH =3 us, PERIGD*1 ms, AMPLITUDE =10V GREATER THAN THE PRECISION OF MEASUREMENT. Fig. 15 - Switching time test circuit. BLOCKING DIODE NOTES 1. SET Vpg TO THE VALUE SPECIFIED UNDER DETAILS USING A 0.15 PULSE WIDTH WITH A MINIMUM OF 1 MINUTE BETWEEN PULSES. INCREASE Vgg UNTIL THE SPECIFIED VALUE OF Ip ANO Vpg ARE OBTAINED. CASE TEMPERATURE = 25C. 2, SELECT Rg SUCH THAT Ip Ag = 25 + 1.0 Vae. Fig. 16 - Safe operating area test circuit. 4-63