Agilent 4N35
Phototransistor Optocoupler
General Purpose Type
Data Sheet
Features
High Current Transfer Ratio
(CTR: min. 100% at IF = 10 mA,
VCE = 10 V)
Response time (tr: typ., 3 µs at
VCE = 10 V, IC = 2 mA, RL = 100 )
Input-output isolation voltage
(Viso = 3550 Vrms)
Dual-in-line package
UL approved
CSA approved
IEC/EN/DIN EN 60747-5-2 approved
Options available:
Leads with 0.4" (10.16 mm)
spacing (W00)
Leads bends for surface
mounting (300)
Tape and reel for SMD (500)
IEC/EN/DIN EN 60747-5-2
approvals (060)
Applications
I/O interfaces for computers
System appliances, measuring
instruments
Signal transmission between
circuits of different potentials and
impedances
Description
The 4N35 is an optocoupler for
general purpose applications. It
contains a light emitting diode
optically coupled to a photo-
transistor. It is packaged in a 6-pin
DIP package and available in wide-
lead spacing option and lead bend
SMD option. Response time, tr, is
typically 3 µs and minimum CTR is
100% at input current of 10 mA.
Functional Diagram
Ordering Information
Specify part number followed by
Option Number (if desired).
4N35-XXXE
Lead Free
Option Number
000 = No Options
060 = IEC/EN/DIN EN 60747-5-2
Option
W00 = 0.4" Lead Spacing Option
300 = Lead Bend SMD Option
500 = Tape and Reel Packaging
Option
Schematic
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to
prevent damage and/or degradation which may be induced by ESD.
654
123
PIN NO. AND INTERNAL
CONNECTION DIAGRAM
1. ANODE
2. CATHODE
3. NC
4. EMITTER
5. COLLECTOR
6. BASE
1
2
ANODE
CATHODE
V
F
+
I
F
6
5
4
BASE
COLLECTOR
EMITTER
I
C
2
Package Outline Drawings
4N35-060E
4N35-W00E
4N35-300E
Y Y WW
6.5 ± 0.5
(0.256)
3.5 ± 0.5
(0.138)
3.3 ± 0.5
(0.13)
0.5 TYP.
(0.02)
0.5 ± 0.1
(0.02)
2.54 ± 0.25
(0.1)
2.8 ± 0.5
(0.110)
7.3 ± 0.5
(0.287) 7.62 ± 0.3
(0.3)
0.26
(0.010)
7.62 ~ 9.98
LEAD FREE
ANODE
DATE CODE *1
A 4N35 V
DIMENSIONS IN MILLIMETERS AND (INCHES)
Y Y WW
6.5 ± 0.5
(0.256)
3.5 ± 0.5
(0.138)
0.5 ± 0.1
(0.02)
2.54 ± 0.25
(0.1)
2.8 ± 0.5
(0.110)
7.3 ± 0.5
(0.287)
7.62 ± 0.3
(0.3)
0.26
(0.010)
10.16 ± 0.5
(0.4)
LEAD FREE
ANODE
DATE CODE *1
A 4N35 6.9 ± 0.5
(0.272)
2.3 ± 0.5
(0.09)
DIMENSIONS IN MILLIMETERS AND (INCHES)
1.2 ± 0.1
(0.047)
2.54 ± 0.25
(0.1)
7.3 ± 0.5
(0.287)
7.62 ± 0.3
(0.3)
0.26
(0.010)
10.16 ± 0.3
(0.4)
1.0 ± 0.25
(0.39)
DATE CODE *1
Y Y WW
6.5 ± 0.5
(0.256)
LEAD FREE
ANODE
A 4N35
3.5 ± 0.5
(0.138)
0.35 ± 0.25
(0.014)
DIMENSIONS IN MILLIMETERS AND (INCHES)
4N35-000E
Y Y WW
6.5 ± 0.5
(0.256)
3.5 ± 0.5
(0.138)
3.3 ± 0.5
(0.13)
0.5 TYP.
(0.02)
0.5 ± 0.1
(0.02)
2.54 ± 0.25
(0.1)
2.8 ± 0.5
(0.110)
7.3 ± 0.5
(0.287) 7.62 ± 0.3
(0.3)
0.26
(0.010)
7.62 ~ 9.98
LEAD FREE
ANODE
DATE CODE *1
A 4N35
DIMENSIONS IN MILLIMETERS AND (INCHES)
3
Absolute Maximum Ratings
Storage Temperature, TS–55˚C to +150˚C
Operating Temperature, TA–55˚C to +100˚C
Lead Solder Temperature, max. 260˚C for 10 s
(1.6 mm below seating plane)
Average Forward Current, IF60 mA
Reverse Input Voltage, VR6 V
Input Power Dissipation, PI100 mW
Collector Current, IC100 mA
Collector-Emitter Voltage, VCEO 30 V
Emitter-Collector Voltage, VECO 7 V
Collector-Base Voltage, VCBO 70 V
Collector Power Dissipation 300 mW
Total Power Dissipation 350 mW
Isolation Voltage, Viso (AC for 1 minute, R.H. = 40 ~ 60%) 3550 Vrms
30 seconds
60 ~ 150 sec 90 sec 60 sec
60 sec
25°C
150°C
200°C
250°C260°C (Peak Temperature)
217°C
Time (sec)
Temperature (°C)
Solder Reflow Temperature Profile
1) One-time soldering reflow is
recommended within the
condition of temperature and
time profile shown at right.
2) When using another soldering
method such as infrared ray
lamp, the temperature may rise
partially in the mold of the
device. Keep the temperature on
the package of the device within
the condition of (1) above.
4
Figure 1. Forward current vs. temperature. Figure 2. Collector power dissipation vs.
temperature.
Figure 3. Forward current vs. forward voltage.
IF FORWARD CURRENT mA
0
TA AMBIENT TEMPERATURE °C
-25 75 125
60
25
20
40
100
0 50 100-55
80
P
C
COLLECTOR POWER DISSIPATION mW
0
T
A
AMBIENT TEMPERATURE °C
-25 75 125
200
25
100
400
0 50 100-55
300
IF FORWARD CURRENT mA
1
VF FORWARD VOLTAGE V
2.0 3.0
10
5
500
1.00
TA = 75°C
0.5 1.5 2.5
2
20
50
100
200 TA = 50°C
TA = 25°C
TA = 0°C
TA = -25°C
* CTR = x 100%
IC
IF
Electrical Specifications (TA = 25˚C)
Parameter Symbol Min. Typ. Max. Units Test Conditions
Forward Voltage VF 1.2 1.5 V IF = 10 mA
Reverse Current IR––10µAV
R = 4 V
Terminal Capacitance Ct 50 pF V = 0, f = 1 KHz
Collector Dark Current ICEO ––50nAV
CE = 10 V, IF = 0, TA = 25˚C
500 µAV
CE = 30 V, IF = 0, TA = 100˚C
Collector-Emitter Breakdown Voltage BVCEO 30 V IC = 0.1 mA, IF = 0
Emitter-Collector Breakdown Voltage BVECO 7–VI
E = 10 µA, IF = 0
Collector-Base Breakdown Voltage BVCBO 70 V IC = 0.1 mA, IF = 0
Collector Current IC10 mA IF = 10 mA
*Current Transfer Ratio CTR 100 % VCE = 10 V
Collector-Emitter Saturation Voltage VCE(sat) 0.3 V IF = 50 mA, IC = 2 mA
Response Time (Rise) tr–310µsV
CC = 10 V, IC = 2 mA
Response Time (Fall) tf–310µsR
L = 100
Isolation Resistance Riso 5 x 1010 1 x 1011 DC 500 V
40 ~ 60% R.H.
Floating Capacitance Cf 1 2.5 pF V = 0, f = 1 MHz
5
Figure 4. Current transfer ratio vs. forward
current.
Figure 5. Collector current vs. collector-
emitter voltage.
Figure 6. Relative current transfer ratio vs.
temperature.
Figure 7. Collector-emitter saturation
voltage vs. temperature.
Figure 8. Collector dark current vs.
temperature.
Figure 9. Response time vs. load resistance.
IC COLLECTOR CURRENT mA
0
VCE COLLECTOR-EMITTER VOLTAGE V
10 15
20
10
30
50
PC (MAX.)
TA = 25°CIF = 15 mA
IF = 10 mA
IF = 5 mA
IF = 2 mA
RELATIVE CURRENT TRANSFER RATIO %
0
100
50
150
V
CE
= 10 V
I
F
= 10 mA
T
A
AMBIENT TEMPERATURE °C
-25 75250 50 100-55
VCE(SAT.) COLLECTOR-EMITTER
SATURATION VOLTAGE V
0
TA AMBIENT TEMPERATURE °C
-25 7525
0.04
0.12
0 50 100-55
0.08
0.02
0.06
0.10 IC = 2 mA
IF = 50 mA
RESPONSE TIME µs
0.1
R
L
LOAD RESISTANCE k
0.1 5
1
0.5
0.2
0.5
100
0.2 2 100.05
2
20 50
V
CE
= 10 V
I
C
= 2 mA
T
A
= 25°C
tf
tr
1
5
10
20
50
200
td
ts
I
CEO
COLLECTOR DARK CURRENT A
10
-13
-25 80 1254020 60 100-55
T
A
AMBIENT TEMPERATURE °C
V
CE
= 10 V
10
-12
10
-11
10
-10
10
-9
10
-8
10
-7
10
-6
5
5
5
5
5
5
5
CTR CURRENT TRANSFER RATIO %
0
I
F
FORWARD CURRENT mA
0.2 5 100
100
1
20
60
180
0.5 2 100.1
140
V
CE
= 10 V
T
A
= 25°C
20 50
500 k100 k
40
80
120
160
R
BE
=
Figure 11. Collector-emitter saturation
voltage vs. forward current.
Figure 10. Frequency response.
VOLTAGE GAIN AV dB
-20
f FREQUENCY kHz
1 20 500
-5
5
-15
-10
5
210500.5
0
100 200
R
L
= 10 k
V
CE
= 5 V
I
C
= 2 mA
T
A
= 25°C
R
L
= 1 k
R
L
= 100
0
I
F
FORWARD CURRENT mA
10 15
2
7
50
1
3
4
5
6
V
CE(SAT.)
COLLECTOR-EMITTER
SATURATION VOLTAGE V
T
A
= 25°C
I
C
= 0.5 mA
I
C
= 1 mA
I
C
= 2 mA
I
C
= 3 mA
I
C
= 6 mA
I
C
= 7 mA
www.agilent.com/semiconductors
For product information and a complete list of
distributors, please go to our web site.
For technical assistance call:
Americas/Canada: +1 (800) 235-0312 or
(916) 788-6763
Europe: +49 (0) 6441 92460
China: 10800 650 0017
Hong Kong: (+65) 6756 2394
India, Australia, New Zealand: (+65) 6755 1939
Japan: (+81 3) 3335-8152 (Domestic/Interna-
tional), or 0120-61-1280 (Domestic Only)
Korea: (+65) 6755 1989
Singapore, Malaysia, Vietnam, Thailand,
Philippines, Indonesia: (+65) 6755 2044
Taiwan: (+65) 6755 1843
Data subject to change.
Copyright © 2004 Agilent Technologies, Inc.
Obsoletes 5989-0291EN
November 3, 2004
5989-1737EN
VCC
RD
INPUT
RL
OUTPUT
INPUT
OUTPUT 10%
90%
t
t t
t
d
f
s
r
Test Circuit for Response Time Test Circuit for Frequency Response
VCC
RD
RL
OUTPUT
~