Standard Power MOSFETs IRFF120, IRFF121, IRFF122, IRFF123 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 5.0A and 6.0A, 60V-100V fos(on) = 0.30 QO and 0.400 Features: B SOA is power-dissipation limited @ Nanosecond switching speeds @ Linear transfer characteristics @ High input impedance @ Majority carrier device The IRFF120, (RFF121, IRFF122 and IRFF123 are n-channel enhancement-mode silicon-gate power field- effect transistors designed for applications such as switch- ing regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching tran- sistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRFF-types are supplied in the JEDEC TO-205AF (LOW-PROFILE TO-39) metal package. File Number 1563 N-CHANNEL ENHANCEMENT MODE $s $2CS-33741 TERMINAL DIAGRAM TERMINAL DESIGNATION GATE ORAIN SOURCE (CASE) 9205-37555 JEDEC TO-205AF Absolute Maximum Ratings Parameter (RFF120 {REF121 FRFF122 IRFF123 Units Vos Drain - Source Vottage @ 100 60 100 60 v VoGR Drain - Gate Voltage (Rgs = 20 KN) 100 60 100 60 v Ip @Te = 25C Continuous Drain Current 6.0 6.0 5.0 5.0 A low Pulsed Drain Current @ 24 24 20 20 A VG: Gate - Source Voltage 20 v Pp @ Te = 25C Max. Power Dissipation 20 (See Fig, 14) w Linear Derating Factor 0.16 (See Fig. 14) : wee tL Inductive Current, Clamped {See Fig. 16 and 16) L = 100uH A 24 j 24 l 20 i 20 Pe Sa age 3610180 *e Lead Temperature * 300 (0.063 in. (1.6mm) from case for 10s) C 3-254Standard Power MOSFETs IRFF120, IRFF121, IRFF122, IRFF123 Electrical Characteristics @T = 25C (Uniess Otherwise Specified) Parameter Type Min, | Typ. | Max. Units Test Conditions BVpss_ Drain - Source Breakdown Voltage IRFF120 _ ~ = iarF122 | 10 Vv Vos = ov WRFFA24 = IRFF123 | 8 ~ - v Ip = 25004 Vgsith)_Gate Threshold Voltage ALL 20 | - | 4.0 v Vos = Vgg- Ip = 2502 (ggg __Gate-Source Leakage Forward ALL - = 100 nA Vgs = 20V oss Gate-Source Leakage Reverse ALL = |-100 n Gg = -20V }-SSS__. loss Zero Gate Voltage Drain Current au f= = 250 BA Vos = Max. Rating, Vgg = OV = = | 1000, nA Vpg = Max. Rating x 0.8, Vg = OV, Tc = 126C Ipion) On-State Drain Current @ IRFF120 | 69 _ _ A IRFF121 Vos? 'pion * Rpsian) mex. Vag * 10V IRFF122 | 6 9 _ _ A iRFF123 . Rosion) Static Drain-Source On-State (RFF120 Resistance @ wreeiz1 | ~ [92510301 8 y tov. In = 3.04 RFI221 ~~ losoloao| a os Somos IRFF123 . " ts Forward Transconductance ALL 15 129 | - stu Vos > lpion) *Fpsion) max." !p = 3-04 Ciss Input Capacitance ALL = 450 pF Vs = OV. Vog = 28V. f = 1.0 MHz Coss Output Capacitance ALL ~ 200 _ pF See Fig. 10 Cres Reverse Transfer Capacitance ALL - so | pF tdion) _Turn-On Delay Time ALL ~ 20 40 ns Vop = 0-5 BVogg. ip = 3.04. Z, = 502 & Rise Time ALL 7 37 70 ns See Fig. 17 tajotfy _Turn-Off Delay Time ALL = 50 100 ns {MOSFET switching times are essentially tf Fall Time "ALL ~ 35 70 ns independent of operating temperature.) Qa Total Gate Charge Vv. = 10V. 15 = 10A. V, = 0.8 Max. Rating. a = cs 7 DF (Gate-Source Plus Gate-Drain) ALL 40 8 ne See Fig. 18 tor test circuit. (Gate charge is essentially Qgs Gate-Source Charge ALL _ 6.0 9.0 nc independent of operating temperature.) oq Gate-Drain (Miller} Charge ALL - 4.0 6.0 ac Lp internal Drain Inductance ALL - 5.0 - oH Measured from the Modified MOSFET drain lead, 5 mm (0.2 symbol! showing the in.) from header to. internal device center of die. inductances. Lo ls Internal Source Inductance ALL = 15 = AH Measured from the source lead, Smm (0.2 in.) from header to S 1S source bonding pad. $s Thermal Resistance [Rinsc _ Junction-to-Case Au | - | [625 [ ecw] | { Ringa Junction-to-Ambient ALL I - I =~ I 175 | c/w t Free Air Operation ] Source-Drain Diode Ratings and Characteristics Ig Continuous Source Current IRFF120 _ _ 6.0 A Modified MOSFET symbol (Body Diode) VRFFA21 * showing the integral o reverse P-N junction rectifier. IRFF122 _ . 5.0 A IRFF123 Ism Pulse Source Current IRFF 120 _ - 4 6 (Body Diode! @ (REF A21 2 A s IRFF122 IRFF123 20 A Vsp Diode Forward Voltage @ IRFF120 _ _ 28 v Te = 25C. Ig = 6.08, Vgg = OV IRFF121 IRFF 122 - Te = 25C, Ig = 5.04, Vag = OV IRFF123 23-1) c s Gs tre Reverse Recovery Time ALL = 230] ~ ns Ty = 150C, ip = 6.0A,dipidt = 100Aius Gre _ Reverse Recovered Charge ALL - 1.2 = 2c Ty = 150C, Ip = 6.0A, dip/dt = 100A/ns ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controtied by Lg + Lp- @Ty = 25C to 150C. @Pulse Test: Pulse width < 300s, Duty Cycle < 2%. @ Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal impedance Curve iFig. 5). 3-255Standard Power MOSFETs IRFF120, IRFF121, IRFF122, IRFF123 a 2 = z z = . = rs = s 3 z << = 5 s 0 10 30 an 50 Vg. ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics PULSE TEST a a - = 2 = = = = <= = 5 a = = = S = 3 3 3 z z = = 5 5 a 3 Qo 1 2 2 4 Vos, DRAIN-TO-SQURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics eo oy an MAL IMPEDANCE {PER UNIT) 28 Zinyc(t Atnuc. NORMALIZED EFFECTIVE TRANSIENT THER & ig, OAAIN CURRENT (AMPERES) t i ws PULSE TEST Vos > !ptont * Boston) max. Tye Tye Pr 4 6 a 2 10 Vs, GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 2 -- Typical Transfer Characteristics OPERATION IN THIS AREA(S LIMITED BYR IRFFI20, 1 BStont IRFF122, 3 WRFFI20, 1 IRFFt22, 3 Te * 2500 Ty = 1509C MAX + Rinuc = 6.25C/W * SINGLE PULSE + + IRFFI2Z1, 9 oc IRFFI20,2 + 5 10 20 so 6100 200 Vos. ORAIN TO-SGUARCE VOLTAGE (VOLTS) Fig. 4 Maximum Safe Operating Area 2| 1, OUTY FACTOR, D= z 2. PER UNIT BASE = Rynje = 6.25 DEG. C/W. 3. Tym - Te = Pom Zensett. 2 5 10 2 0.02 SINGLE THERMAL IMPEDANCE) 0.01 ws 2 5 ye 2 5 ws 2 5 we 2 5 ol ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 -M Effective Ti Thermal Imped: J 3-256 to-Case Vs. Pulse Duration2 > Ip(on) * RDS(on} max. TEST 0 4 8 2 16 a Ip, RAIN CURRENT (AMPERES) Fig. 6 Typical Transconductance Vs. Drain Current 125 1.20 & 8 e s 2 w& Ss & BV ngs, DRAIN-TO-SQURCE BREAKDOWN VOLTAGE (NORMALIZED) 0.75 40 40 -20 6 2 4 OO BO 10 120 40 Ty, JUNCTION TEMPERATURE (9C} Fig. 8 Breakdown Voltage Vs. Temperature =o (= Me Cigg = Cgc + Cyt. Cas SHORTED Cimg * Cy Cos C Coss * Gas * tet Cog + Cog I C, CAPACITANCE (pF) 9 1 n 30 40 0 Veg. ORAIN-TO SOURCE VOLTAGE (VOLTS) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage Standard Power MOSFETs IRFF120, IRFF121, IRFF122, (RFF123 Ipp, REVERSE DRAIN CURRENT (AMPERES} 0 1 2 3 Vgp. SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7 ~ Typical Source-Drain Diode Forward Voltage 2.50 2.25 Rosion). ORAIN-TO-SOURCE ON-STATE RESISTANCE (NORMALIZED) 8 & 8 0.25 0 60 40 -20 #0 nm 0 66 80 WO 120) 140 Ty, JUNCTION TEMPERATURE c) Fig. 9 Normalized On-Resistance Vs. Temperature Vos = 20 Yog = 50V i Vpg 80V.IRFFI2U, 122 Ip > 10A FOR TEST CIRCUIT SEE FIGURE 18 Vag, GATE-TO-SOURCE VOLTAGE (VOLTS) Q 4 8 12 16 20 Gy. TOTAL GATE CHARGE inC} Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 3-257Standard Power MOSFETs IRFF120, IRFF121, IRFF122, IRFF123 Da 60 3 [ = Ss 48 w 2 os Vag = 10V zs = z & = g s # =z 36 5 5 a a z 04 = 5 8 3 3 LY zu 3 tT et 5 S 02 Vas = 20v = z 12 g 2 1 Rosion) MEASURED WITH CURRENT PULSE OF 2.0 us DURATION. INITIAL Ty = 25C. {HEATING EFFECT OF 2.0 ys PULSE IS MINIMAL) \ 1 \ i Q a 10 20 30 40 28 50 15 190 125 150 Ip, DRAIN CURRENT (AMPERES) Te, CASE TEMPERATURE (C) Fig. 12 Typical On-Resistance Vs. Orain Current Fig. 13 Maximum Drain Current Vs. Case Temperature 20 Pp, POWER DISSIPATION (WATTS) 3 0 20 a 60 ag 100 120 140 To, CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve VARY ty TO OBTAIN REQUIRED PEAK I, E, = 0.58Vpss J Ve 0.758Vps5, re Fig. 15 Clamped Inductive Test Circuit Fig. 16 Clamped Inductive Waveforms Oo + as {ISOLATED SUPPLY} CURRENT REGULATOR SAME TYPE ADJUST AL OE) TO OBTAIN - | 12v Tv meee Sry barteny | O2af i a PuLsE GENERATOR 9 BUT. L. crt ey | a | fr) sa TO SCOPE 0.010 | 1 sen3 HIGH FREQUENCY L-----J4 SHUNT vem = ft Fig. 17 Switching Time Test Circuit -Vos 1D CURRENT = CURRENT SHUNT SHUNT Fig. 18 Gate Charge Test Circuit 3-258