Type Package Marking
TLE 4473 GV55-2 PG-DSO-12-11 (RoHS compliant) TLE4473 GV55-2
Dual Low Dropout Voltage Regulator
TLE 4473 GV55-2
PG-DSO-12-11
Data Sheet 1 Rev. 1.2, 2008-10-28
Features
Stand-by output 190 mA; 5 V ± 2%
Main output: 300 mA, 5 V
tracked to the stand-by output
Low quiescent current consumption
Disable function separately for both outputs
Wide operation range: up to 42 V
Very low dropout voltage
2 independent reset circuits
Watchdog
Output protected against short circuit
Wide temperature range: -40 °C to 150 °C
Overtemperature protection
Overload protection
Green product (RoHS compliant)
AEC qualified
Functional Description
The TLE 4473 is a monolithic integrated voltage regulator with two low dropout outputs,
a main output Q1 for loads up to 300 mA and a stand by output Q2 providing a maximum
of 190 mA. The stand-by regulator transforms an input voltage VI in the range of 5.6 V
VI 42 V to an output voltage of VQ2 = 5.0 V (±2%). The main output is tracked to the
stand by output voltage and provides also 5 V. A versions of this device with 5 V/3.3 V
and 5 V/2.6 V are also available, please refer to the data sheet TLE 4473 G V53/
TLE 4473 G V52. The Inhibit input INH1 disables the output Q1 only, whereas Inhibit
input INH2 disables both, Q1 and Q2 output. The quiescent current then is 1 µA.
The TLE 4473 is designed to supply microprocessor systems and sensors under the
severe conditions of automotive applications and therefore is equipped with additional
protection functions against overload, short circuit and overtemperature. The device
operates in the wide junction temperature range of -40 °C to 150 °C.
http://store.iiic.cc/
Data Sheet 2 Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
The device features a reset with adjustable power on delay for each of the outputs. In
addition the output for the microcontroller supply comes up with a watchdog in order to
supervise a connected microcontroller
Reset and Watchdog Behavior
The reset output RO2 is in high-state if the voltage on the delay capacitor CD2 is greater
or equal VDU2. The delay capacitor CD2 is charged with the current IDC2 for output
voltages greater than the reset threshold VRT2. If the output voltage gets lower than VRT2
(‘reset condition’) a fast discharge of the delay capacitor CD2 sets in and as soon as VD2
gets lower than VDL2 the reset output RO2 is set to low-level. The time for the delay
capacitor charge is the reset delay time. For the power-on case the charging process of
CD2 starts from 0 V, which leads to the equation:
(1)
for the power-on reset delay time.
When the voltage on the delay capacitor has reached VDU2 and reset was set to high, the
watchdog circuit is enabled and discharges CD2 with the constant current IDD2.
If there is no rising edge observed at the watchdog input, CD2 will be discharge down to
VDL2. Then reset output RO2 will be set to low and CD2 will be charged again with the
current IDC2 until VD2 reaches VDU2 and reset will be set high again.
If the watchdog pulse (rising edge at watchdog input WI) occurs during the discharge
period CD2 is charged again and the reset output stays high. After VD2 has reached VDU2,
the periodical cycle starts again.
The watchdog timing is shown in Figure 1. The maximum duration between two
watchdog pulses corresponds to the minimum watchdog trigger time TWI,tr. Higher
capacitances on pin D2 result in longer watchdog trigger times:
(2)
If the output voltage Q1 decreases below VRT1 (typ. 4.65 V), the external capacitor CD1
is discharged by the reset generator of the main output. If the voltage on this capacitor
drops below VDL1, a reset signal is generated on pin 2 (RO1). If the output voltage rises
above the reset threshold, CD1 will be charged with the constant current IDC1. After the
power-on-reset time the voltage on the capacitor reaches VDU1 and the reset output will
be set high again. The value of the power-on-reset time can be set within a wide range
depending of the capacitance of CD1 using the above given equation (1) analogous for
Q1.
tDon,
CD2 VDU2
×
IDC2
-----------------------------=
TWI,tr max 0.34 ms/nF CD2
×=
http://store.iiic.cc/
TLE 4473 GV55-2
Data Sheet 3 Rev. 1.2, 2008-10-28
Figure 1 Watchdog Timing Schedule
AED03099_4473
W
V
V
V
Q
D2
V
V
RO2
V
DU2
-
V
DL2
()
Ι
(
DC2
+
DD2
)
Ι
Ι
DC2
Ι
x
DD2
T
WD, p
=
WD, L
t
WD, p
T
WI, tr
T
WD, L
t
=
VV
(
DU2
-
DL2
)
Ι
DC2
T
=
VV
(
DU2
-
DL2
)
Ι
DD2
DU2
V
V
DL2
Ι
Ι
WI, tr
C
D2
;
;
D2
C
D2
C
t
t
t
t
t
http://store.iiic.cc/
Data Sheet 4 Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
Figure 2 Block Diagram with Typical External Components
TLE 4473 GV55-2
TLE4473G V55-2_BLO CKDIAG RAM .VSD
Current and
Saturation
Control,
Overcurrent
Protection
Overtemperature
Shutdown
Bandgap
Reference
Inhibit
Reset
Generator
Watchdog
Current and
Saturation
Control,
Overcurrent
Protection
Inhibit
Reset
Generator
GND
10
µF
4.7 k
4
3
Q2
RO2
µC
Supply
µC
Reset
1WI Watchdog
(from µC)
100 nF
11D2
2RO1
6Q1
10
µF
4.7 k
e.g. Senso
r
Supply
e.g. Senso
r
Reset
(to µ C )
INH18
µC
INH29
Ignition
I7
VBat
CI
100 nF
12
100 nF
10D1
http://store.iiic.cc/
TLE 4473 GV55-2
Data Sheet 5 Rev. 1.2, 2008-10-28
Application Information
The output voltage is divided by a voltage divider and compared to an internal reference
voltage. A regulation loop controls the Q2 output in order to achieve a stable output
voltage at the Q2 pin. A second regulation loop controls the Q1 output. The reference
voltage for the Q1 is the regulated Q2 potential (tracking regulator).
Figure 2 includes the components needed for a typical application. Maintaining the
stability of the regulation loops requires a capacitor of 10 µF both outputs. A maximum
ESR of 5 is permissible for the Q2 output, while the Q1 output requires a capacitor with
a maximum ESR of 3 . For both output blocking capacitors it is recommended to use
tantalum types in order to stay in the permissible ESR range over the full operating
temperature range.
At the input of the regulator a capacitor is necessary for compensating line influences. A
minimum of 100 nF (ceramic capacitor) is recommended. In addition for compensation
of long input lines of several meters an electrolytic input capacitor of 47 µF … 220 µF
should be placed at the input.
Figure 3 Pin Configuration (top view)
TLE4473GV55-2_PIN OU T.VSD
1WI
2
RO1
3
RO2
12
11
10
D2
D1
4Q2
5
N.C.
6
Q1
9
8
7
INH2
INH1
I
GND
TLE 4473 GV55-2
(P-DSO-12)
http://store.iiic.cc/
Data Sheet 6 Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
Table 1 Pin Definitions and Functions
Pin No. Symbol Function
1WIWatchdog input; input for watchdog pulses, positive edge
triggered.
2RO1Reset and watchdog output for Q1; open collector output.
Connect to pull-up resistor.
3RO2Reset output 2; open collector output. Connect to pull-up resistor.
4Q2Stand-by regulator output voltage; block to GND with a capacitor
CQ2 10 µF, ESR < 5 at 10 kHz.
5N.C.Internally not connected; connect to GND.
6Q1Main regulator output voltage; output voltage tracked to Q2
voltage; block to GND with a capacitor CQ1 10 µF, ESR < 3 at
10 kHz
7I Input voltage; block to ground directly at the IC with a ceramic
capacitor.
8INH1
Inhibit input 1; low level disables Q1, integrated pull-down resistor.
9INH2
Inhibit input 2; low level at INH2 and INH1 disables Q2 and Q1,
integrated pull-down resistor.
10 D1 Reset Delay 1; connect to ground via a capacitor to set reset delay
for Q1.
11 D2 Reset Delay 2; connect to ground via a capacitor to set reset delay
and watchdog timing for Q2.
12 GND Ground; connect to heatslug.
Heatslug Interconnect with PCB heatsink area and GND.
http://store.iiic.cc/
TLE 4473 GV55-2
Data Sheet 7 Rev. 1.2, 2008-10-28
Table 2 Absolute Maximum Ratings
-40 °C < Tj < 150 °C
Parameter Symbol Limit Values Unit Remarks
Min. Max.
Input I
Voltage VI-42 45 V
Current II mA Internally limited
Stand-by Output Q2
Voltage VQ2 -0.3 18 V
Current IQ2 mA Internally limited
Main Output Q1
Voltage VQ1 -0.3 18 V
Current IQ1 mA Internally limited
Inhibit Input INH1
Voltage VINH1 -42 45 V
Current IINH1 -2 2 mA
Inhibit Input INH2
Voltage VINH2 -42 45 V
Current IINH2 -2 2 mA
Reset Output RO1
Voltage VRO1 -0.3 18 V
Current IRO1 mA Internally limited
Reset Output RO2
Voltage VRO2 -0.3 18 V
Current IRO2 – – mA Internally limited
Reset Delay D1
Voltage VD1 -0.3 7 V
Current ID1 -5 5 mA
Reset Delay D2
Voltage VD-0.3 7 V
Current ID-5 5 mA
http://store.iiic.cc/
Data Sheet 8 Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
Note: In the operating range the functions given in the circuit description are fulfilled.
Integrated protection functions are designed to prevent IC destruction under fault
conditions. Protection functions are not designed for continuous repetitive
operation.
Watchdog Input WI
Voltage VRADJ -0.3 7 V
Current IRADJ -5 5 mA
Temperatures
Junction temperature Tj-50 150 °C–
Storage temperature Tstg -50 150 °C–
Table 3 Operating Range
Parameter Symbol Limit Values Unit Remarks
Min. Max.
Input voltage VI5.6 42 V
Junction temperature Tj-40 150 °C–
Thermal Resistances PG-DSO-12-11
Junction pin Rthj-pin –4K/W
Junction ambient Rthj-a 115 K/W PCB Heat Sink
Area 0 mm2 1)
1) Package mounted on PCB 80 × 80 × 1.5 mm3; 35µ Cu; 5µ Sn; zero airflow.
Junction ambient Rthj-a 100 K/W PCB Heat Sink
Area 100 mm2 1)
Junction ambient Rthj-a 60 K/W PCB Heat Sink
Area 300 mm2 1)
Junction ambient Rthj-a 48 K/W PCB Heat Sink
Area 600 mm2 1)
Table 2 Absolute Maximum Ratings (cont’d)
-40 °C < Tj < 150 °C
Parameter Symbol Limit Values Unit Remarks
Min. Max.
http://store.iiic.cc/
TLE 4473 GV55-2
Data Sheet 9 Rev. 1.2, 2008-10-28
Table 4 Electrical Characteristics
VI1 = 13.5 V; VINH1 = VINH2 = 5 V; -40 °C < Tj < 150 °C; unless otherwise specified
Parameter Symbol Limit Values Unit Test Condition
Min. Typ. Max.
Stand-by Regulator
Output Q2
Output voltage VQ2 4.90 5.0 5.10 V 1 mA < IQ2 < 190 mA;
6 V < VI < 28 V
Output current
limitation
IQ2 200 300 650 mA VQ2 = 4.5 V
Output drop voltage;
VDRQ1 = VI1 - VQ1
VDRQ2 200 600 mV IQ2 = 100 mA1)
Load regulation VQ2,Lo –1550mV1 mA < IQ2 < 190 mA
Line regulation VQ2,Li –520mVIQ2 = 1 mA;
6 V < VI < 28 V
Power Supply Ripple
Rejection
PSRR –65–dBfr = 100 Hz;
Vr = 1 Vpp
Current Consumption
Quiescent current;
stand-by
Iq = II - IQ2
Iq 170 220 µAIQ2 = 500 µA; Tj = 25 °C;
VINH1 < VINH1 OFF (Q1 off)
––245µAIQ2 = 500 µA; Tj = 85 °C;
VINH1 < VINH1 OFF (Q1 off)
––280µAIQ2 = 500 µA;
VINH1 < VINH1 OFF (Q1 off)
–4.55mA
IQ2 = 100 mA;
VINH1 < VINH1 OFF (Q1 off)
Quiescent current;
inhibited
Iq–0.11µAVINH1 = VINH2 = 0 V;
Tj < 85 °C
–0.120µAVINH1 = VINH2 = 0 V
http://store.iiic.cc/
Data Sheet 10 Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
Inhibit Input INH2
Turn-on Voltage VINH2 ON ––2.3VVQ2 on
Turn-off Voltage VINH2 OFF 0.65 V VQ2 off
H-input current IINH2 ON -1 3.2 6 µAVINH2 = 5.0 V (see
Page 13)
L-input current IINH2 OFF -1 0.1 1 µA0 V < VINH2 < 0.8 V
Watchdog and Reset Timing D2
Charge current IDC2 6.5 9.0 14.0 µAVD2 = 1 V
Discharge current IDD2 2.0 3.5 5.0 µAVD2 = 1 V
Upper timing
threshold
VDU2 1.5 1.85 2.4 V
Lower timing
threshold
VDL2 0.3 0.45 0.6 V
Saturation Voltage VD2,SAT ––100mVVQ2 < VRT2
Watchdog trigger
time
TWI,tr 34 42 51 ms CD2 = 100 nF
Reset delay time TRD2 15 20 25 ms CD2 = 100 nF
Reset reaction time Trr ––5.0µsCD2 = 100 nF
Reset Output RO2
Reset switching
threshold
VRT2 4.55 4.65 4.8 V
VRT2/VQ2 90 93 96 %
Reset threshold
headroom
VR2HEAD 200 350 500 mV VQ2 - VRT2
Reset output
sink current
IRO2 1.0––mAVQ2 = 5 V, VD2 = 0 V;
VRO2 = 0.3 V
Reset output
low voltage
VRO2L –0.150.3VVQ2 1 V;
IRO2 = 1 mA
Reset high voltage VRO2H 4.5––VRRO2,ext = 4.7 k
Table 4 Electrical Characteristics (cont’d)
VI1 = 13.5 V; VINH1 = VINH2 = 5 V; -40 °C < Tj < 150 °C; unless otherwise specified
Parameter Symbol Limit Values Unit Test Condition
Min. Typ. Max.
http://store.iiic.cc/
TLE 4473 GV55-2
Data Sheet 11 Rev. 1.2, 2008-10-28
Main (Tracked) Regulator
Output Q1
Output voltage VQ1 4.875 5.0 5.125 V 1 mA < IQ1 < 200 mA;
6 V < VI < 28 V
Output voltage
tracking accuracy VQ =
VQ2 -VQ1
-25 5 25 mV 1 mA < IQ1 < 200 mA;
6 V < VI < 28 V
Output voltage
tracking accuracy VQ =
VQ2 -VQ1
-25 5 25 mV 1 mA < IQ1 < 300 mA;
8 V < VI < 28 V
Output current
limitation
IQ1 350 500 mA VQ1 = 4.5 V
Output drop voltage
VDRQ1 = VI - VQ1
VDRQ1 300 600 mV IQ1 = 200 mA1)
Load regulation VQ1,Lo 5 50 mV 5 mA < IQ1 < 300 mA
Line regulation VQ1,Li –525mVIQ1 = 5 mA;
6 V < VI < 28 V
Power Supply Ripple
Rejection
PSRR –65–dBfr = 100 Hz;
Vr = 1 Vpp
Current Consumption
Quiescent current;
Iq = II - IQ1 - IQ2
Iq–1020mAIQ1 = 300 mA;
IQ2 = 500 µA;
VQ1 and VQ2 on
Quiescent current;
Iq = II - IQ1 - IQ2
Iq 250 500 µAIQ2 = IQ1 = 500 µA;
VQ1 and VQ2 on
Inhibit Input INH1
Turn-on Voltage VINH1 ON ––2.3VVQ1 on
Turn-off Voltage VINH1 OFF 0.7––VVQ1 off
H-input current IINH1 ON -1 3.5 5 µA 3.0 V < VINH1 < 5 V;
(see Page 14)
L-input current IINH1 OFF -1 0.1 1 µA0 V < VINH1 < 0.8 V
Table 4 Electrical Characteristics (cont’d)
VI1 = 13.5 V; VINH1 = VINH2 = 5 V; -40 °C < Tj < 150 °C; unless otherwise specified
Parameter Symbol Limit Values Unit Test Condition
Min. Typ. Max.
http://store.iiic.cc/
Data Sheet 12 Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
Reset Timing D1
Charge current IDC1 4.0 8.0 14.0 µAVD1 = 1 V
Upper timing
threshold
VDU1 1.6 1.8 2.2 V
Lower timing
threshold
VDL2 0.3 0.4 0.6 V
Saturation Voltage VD1,SAT ––100mVVQ1 < VRT1
Reset delay time TRD1 14 20 30 ms CD1 = 100 nF
Reset reaction time Trr ––10µsCD1 = 100 nF
Reset Output RO1
Reset switching
threshold
VRT1 4.5 4.65 4.8 V
VRT1/VQ1 90 93 96 %
Reset threshold
headroom
VR1HEAD 200 350 500 mV VQ1 - VRT1
Reset output
sink current
IRO1 1.0––mAVQ1 = 5.0 V; VQ2 = 5.0 V;
VD1 = 0 V; VRO1 = 0.3 V
Reset output
low voltage
VRO1L –0.150.3VVQ1 1 V
IRO1 = 1 mA
Reset output high
voltage
VRO1H 4.5––VRRO1,ext = 4.7 k
1) Drop voltage = VI - VQ (measured when the output voltage has dropped 100 mV from the nominal value
obtained at 13.5 V input)
Table 4 Electrical Characteristics (cont’d)
VI1 = 13.5 V; VINH1 = VINH2 = 5 V; -40 °C < Tj < 150 °C; unless otherwise specified
Parameter Symbol Limit Values Unit Test Condition
Min. Typ. Max.
http://store.iiic.cc/
Data Sheet 13 Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
Typical Performance Characteristics
Output Voltage VQ2 versus
Input Voltage VI
Reset Thresholds VRT1, VRT2 versus
Junction Temperature TJ
Output Voltage VQ2 versus
Junction Temperature TJ
INH2 Input Current versus
Inhibit Voltage
AED03353.VSD
0
VI
VQ2
123456 V8
0
1
2
3
4
5
6
7
8
V
RLoad = 50
VINH2 = 5 V
AED03354.VSD
-40
Tj
04080 °C160
V
VRT1, VRT2
4.55
4.60
4.65
4.70
4.75
4.80
AED03352.VSD
-40
Tj
0 40 80 °C 160
V
VQ2
4.90
4.95
5.00
5.05
5.10
5.15
AED03351.VSD
0
VINH2
IINH2
123456 V8
0
1
2
3
4
5
6
7
8
µA
http://store.iiic.cc/
Data Sheet 14 Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
INH1 Input Current versus
Inhibit Voltage
AED03350.VSD
0
VINH1
IINH1
123456 V8
0
1
2
3
4
5
6
7
8
µA
http://store.iiic.cc/
TLE 4473 GV55-2
Data Sheet 15 Rev. 1.2, 2008-10-28
Package Outline
Figure 4 PG-DSO-12-11 (Plastic Dual Small Outline)
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products
and to be compliant with government regulations the device is available as a green
product. Green products are RoHS-compliant (i.e Pb-free finish on leads and suitable for
Pb-free soldering according to IPC/JEDEC J-STD-020).
16
712
0.8
(1.55)
2.35 ±0.1
2.6 MAX.
0.1 ±0.3
10.3
(4.4 Mold)
4.2 ±0.1
(1.8 Mold)
±0.1
1.6
Index Marking
+0.13
0.4
1
5 x 1=5
C
0.25 MAB
±0.1
5.1
6.4
A±0.1 7.5
B±0.1
7.8 ±0.1
(Heatslug)
0.25 B
+0.075
0.25
-0.035
±3˚
12x
1)
+0.1
0
1) Does not include plastic or metal protrusion of 0.15 max. per side
1)
STANDOFF
(Body)
(Mold)
(Metal)
712
16
(Metal)
(Metal)
Heatslug
GPS09349
You can find all of our packages, sorts of packing and others in our
Infineon Internet Page “Products”: http://www.infineon.com/products.
Dimensions in mm
SMD = Surface Mounted Device
http://store.iiic.cc/
Data Sheet 16 Rev. 1.2, 2008-10-28
TLE 4473 GV55-2
Revision History
Version Date Changes
Rev. 1.2 2008-10-28 Modification according to PCN No. 2007-117-A:
“Watchdog and Reset Timing D2” on Page 10: Lower
timing threshold VDL2: Max limit change to 0.6V (was 0.5V)
and typ. limit change to 0.45V (was 0.4V).
The change does not impact watchdog or reset timing limits
Rev. 1.1 2007-12-19 Modification according to PCN No. 2007-117-A:
Page 9: Quiescent current Iq; inhibited
(VINH1 = VINH2 = 0 V; Tj < 150 °C):
Max. limit changed to 20µA (was 15µA).
Rev 1.0 2006-12-21 Initial version final datasheet
http://store.iiic.cc/
Edition 2008-10-28
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2008.
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values
stated herein and/or any information regarding the application of the device, Infineon Technologies hereby
disclaims any and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
http://store.iiic.cc/