"3875081 G E SOLID STATE Standard Power MOSFETs : o1 DE ff 3a750a1 0014279 4 , O1E 18279 D -34-/t IRF220, IRF221, IRF222, IRF223 File Number 1567 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 4.0A and 5.0A, 150V-200V os(On) = 0.8 Q and 1.29 Features: . = SOA is power-dissipation limited @ Nanosecond switching speeds Linear transfer characteristics @ High input impedance @ Majority carrier device The IRF220, IRF221, 1RF222 and IRF223 are n-channel enhancement-mode silicon-gate power field- effect transistors designed for applications such as switch- ing regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching tran- sistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AA steel package. N-CHANNEL ENHANCEMENT MODE $s $2CS-33741 TERMINAL DIAGRAM TERMINAL DESIGNATION ORAIN SOURCE (FLANGE) GATE 92CS-37801 JEDEC TO-204AA Absolute Maximum Ratings Parameter IRF220 fAF224 IRF222 IRF223 Unita Vo: Orain - Source Voltage D 200 150 200 160 Vv Yoga Drain - Gate Voltage (Rags = 20K0) O 200 160 200 160 v Ip @Tc = 25C = Continuous Oram Current 6.0 5.0 40 4.0 A tp @Te = 100C $= Continuous Drain Current 3.0 3.0 2.5 2.5 A tom Pulsed Drain Current @ 20 20 16 16 A Ves Gate - Source Voltage 20 Vv Pp @To = 25C Max, Power Dissipation 40 (Sea Fig. 14) w Linear Derating Factor 0.32 (See Feg. 14) Wee iim inductive Current, Clamped (See Fig. 15 and 16)L = 100gH A 20 J 20 l 16 16 Ty - Operating Junctian and Tatg Storaga Temperature Renge SO to 160 *c Lead Temperature 300 (0.063 in. (1.6mm) from case for 103} c 222 _3875081 GE SOLID STATE O1 DE 3475081 00146240 4 i TT 37-11 Standard Power MOSFETs IRF220, IRF221, IRF222, IRF223 Electrical Characteristics @T = 25C (Unless Otherwise Specified) Parameter Type Min. | Typ. | Max. Units Test Conditions BYpsg Orain - Source Breakdown Voltage iRF220 _ _ = InF222 | 200 v Vgs = OV inezeg | 180 | - | - v Ip = 260. Vosith) Gate Threshold Voltage ALL 2.0 7 4.0 Vv Vos = Vos: Ip = 260nA |igsg _ Gate-Source Leakage Forward ALL = = 100 nA Vos = 20V 'gss _ Gata-Source Leakage Reverse ALL = 4-100 nA Vos = -20V loss Zero Gate Voltage Drain Current ALL = _ 250 BA Vos = Max. Rating, Veg = OV ~ [1000 | 4A Vos = Mex. Rating x 0.8, Vgg = OV. Tc = 125C Ipton) On-State Drain Current @ (RE220 | 6g _ _ A IRF224 Vo) | xR, 7 tov OS ? Olan) * "OS(an) max. Yas * tnr222 Tyg | _ _ A IRF223 Ros: Static Orsu-SourceOn State \RF220 _ (on! Resistence @ 1RF221 o5 | 08 | a Ves = 10V, Ip = 2.54 IRF222 _ 0.8 12 2 IRF223 : . Sts Forward Transcenductance @) ALL 13 [2s] o sia Vos? 'otont * Rosion) mex, 'p = 2-54 Cisg _ laput Capacitance ALL - | 450] 600 oF Vag = OV. Vpg = 25V.1 = 1.0MHr Coss Output Capacitance ALL = 150 | 300 pF Sea fig 10 Cres Reverse Transter Capacitance ALL - 40 80 pe tgton) _Turn-On Delay Time ALL = 20 40 as Yoo = 0.5 BVps5s- 'b = 2.54, Zo = 601 t fise Time ALL = 30 60 ns See Fig. 17 tgtotf) Turn-Off Delay Time ALL = 50 100 ns (MOSFET switching times are essentially "4 Fall Time ALL _ 30 60 ns independent of operating temperature.) Qg Total Gate Charge _ " Va@g = 10V, |p = 6.0A, Vog = 0.8 Max. Rating. (Gate-Source Plus Gate-Drain) Au wey See Fig 18 for test circurt. (Gate charge is essentially Qs Gate-Source Charge ALL _ 50 _ ne Independent of operating temperature } Ona Gate-Drain ("Miller") Charge ALL - 60 - ac ip Internat Drain Inductance ALL _ 50 - nH Measured between Modified MOSFET the contact screw on symbol showing the header that is closer to Internal device source and gate pins inductances. and center of die. ls Interna! Source Inductance ALL - 125 - aH Measured from the to source pin, 6 mm | {0.25 in.) from header Got ts and source bending pad $s Thermal Resistance Rinse Juncticn to-Case ALL = = [3.12 | scrw Fincs Case to-Sink ALL = 01 = C/W Mounting surface flat, smooth, and greased. Piya Junction-ta-Ambient ALL - _ 30 | C/W Free Air Operation Source-Drain Diode Ratings and Characteristics Ig. Continuous Source Current IRF220 _ . 60 A Modified MOSFET symbol (Body Diode} IRF221 showing the integral TAF2z2 reverse P Njunction recufier 5 wr223 f | ~ | 49] A Isa Pulse Source Current {RF220 (Body Diode) @ treazi | ~ | ~ | 20 4 4 s (RF222 s wnr223 | ~ | | 18 | A Vv Diode Forward Voltage @) IRF220 sD ine2an | ~ | | 2-0 v Tg = 25C, Ig = 5.0A, Vgg = OV IAF222 IRF223 - - 1.8 Vv Te = 25C, Ig = 4.0A, Yes = OV ler Reverse Recovery Time ALL - 350 - as Ty = 150C, Ip = 5 OA, digidt = 100A/as Qen Reverse Recovered Charge ALL ~ 23 - nc Ty = 150C, Ip = 5.04, digidt = 100Aips ton Forward Turn an Time ALL towinsic tum on time ts negtigible. Turn-on speed is substantially controlled by Lg + Lp OTy = 26Ct0 180C. @Pulse Test: Pulse width < 300us, Duty Cyclo 2%. @ Repetitive Rating: Pulse width bouted J by max. junction temperature. See Transient Thermat Impedance Curve (Fig. 5} TT 223re OL de ff 3a7sos1 oovazsso 9. 3875081 GE SOLID STATE _ O1e 18281 bo 7-39-// Standard Power MOSFETs IRF220, IRF221, [RF222, IRF223 vest Vos > 'pjon) * Apsten) max. i g 8 & = 2 2 Zc = & : 2 2 = = 5 5 3 3 24 z = a a 3 s 2 20 40 Ci 9 100 0 2 6 8 10 . Vps. ORAIN TO SOURCE VOLTAGE [VOLTS) Vos. GATE TO SOUHCE VOLTAGE (VOLTS! Fig. 1 Typical Output Characteristics Fig. 2 - Typical Transfer Characteristics OPERATION IN THIS AREA IS LIMITED BY Roston) 3 = a # a q Zz e 3 z 3 = Z 5 = 2 Tp = 28C s Ty= 150C MAX. Finsc= 3 3 2 Q z 10 1002 5 1 2 80 100 200 600 Vos. ORAIN TO SOURCE VOLTAGE (VOLTS) Vpg. DhAIN TO-SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Area a 5 2 an e Be botianf began 2s 5 1 OUTY FACTOR, O= z THERMAL tMPEDANCE {PER UNIT) 2 PEA UNIT BASE = Anse 73 12 0EG CV 3 Taw -To* Pom Zncl) s Zendeltl/Rugse, NORMALIZED EFFECTIVE TRANSIENT 2 8 52 Ss ws 2 5 we 2 5 w2 2 5 wt 2 5 ww 2 5 10 ty, SGUARE WAVE PULSE DURATION (SECONDS) Fig. 5 i ffective T: ient Thermal Imped: J ion-to-Case Vs. Pulse Duration 224_ OS3875081 GE Ov peWaa7sce, oorazae 1 SOLID STATE O1E 18282 D T= ~ oe - ip, TRANSCOMDUCTANCE (SIEMENS) Vos > 'pten) * 0 2 - 4 6 s 10 Ig. DRAIN CURRENT (AMPERES) Fig. 6 Typical Transconductance Vs. Drain Current BVnss, DRAIN TO SOURCE BREAKDOWN VOLTAGE (NORMALIZED) R & a OTS Qa 4a a0 1200-16 Ty JUNCTION TEMPERATURE (C) Fig. 8 Breakdown Voltage Vs. Temperature 00 Cy * Ce + Coy, Cos SHORTED Crm * Cgt , S wy oO Cay + Cag 2 < I & 5 < = 400 os 200 0 to 20 x 40 50 Vos. ORAIN TO SOURCE VOLTAGE (VOLTS) Fig. 10 Typica! Capacitance Vs. Drain-to-Source Voltage slanaara Power MOSFETs 39-1) IRF220, IRF221, IRF222, IRF223 Row o s . Ip, REVERSE DRAIN CURRENT (AMPERES) n ry 25C 0 1 2 3 4 Vgp. SOURCE TO DRAIN VOLTAGE (VOLTS) Fig. 7 Typical Source-Drain Diode Forward Voltage - 06 Ags{on} ORAIN-TOSOUACE ON RESISTANCE (NORMALIZED) 02 -40 0 40 ao 120 Ty JUNCTION TEMPERATURE {C) Fig. 9 Normalized On-Resistance Vs. Temperature Vps #40 Vos = 160V, Vgs. GATE-TO-SOURCE VOLTAGE (VOLTS! Ip=6a FOR TEST CIRCUIT a 4 a a 16 20 Gy, TOTAL GATE CHARGE (nC) Fig. 11 Typicat Gate Charge Vs. Gate-to-Source Voltage 2253875081 GE SOLID STATE ~ Standard Power MOSFETs O14 ve ff sa7s081 0018243 3 DT 37-// O1E 18283 IRF220, IRF221, IRF222, IRF223 Aipsion} DRAIN-TO-SOURCE ON RESISTANCE {QHMS) oF ty INITIAL Ty = 25C (HEATING EFFECT OF 20s PULSE IS MINIMAL.) Q 5 10 1s Ip. GRAIN CURRENT (AMPERES) Fig. 12 Typical On-Resistance Vs. Drain Current 40 Ky yi) Pp, POWER DISSIPATION (WATTS) ~ 3 a 20 40 0 Ip, DRAIN CURRENT (AMPERES) a 25 50 B 100 125 189 Tg, CASE TEMPERATURE (C) Fig, 13 Maximum Drain Current Vs. Casa Temperature 80 400 120 40 Tc, CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve VARY t, TO OATAIN REQUIRED PEAX I, eL Vos *20V fet Fig. 15 Clamped Inductive Test Circuit h AQUUST Ry TO OBTAIN SPECIFIED ty PULSE GENERATOR r i TO SCOPE aot i HIGH FREQUERCY tl SHUNT Fig. 17 Switching Time Test Circuit 226 ) = OSBVps5 FV, 70 758Vgs5 Fig. 16 Clamped Inductive Waveforms Mos (ISOLATED SUPPLY) CURRENT REGULATOR 6 SAME TYPE AS DUT ny BATTERY | O2uf + CURRENT = SHUNT 10 CURRENT SHUNT Fig. 18 Gate Charge Test Circuit