July 1996
NDT456P
P-Channel Enhancement Mode Field Effect Transistor
General Description Features
_______________________________________________________________________________
Absolute Maximum Ratings TA = 25°C unless otherwise noted
SymbolParameter NDT456PUnits
VDSS Drain-Source Voltage -30 V
VGSS Gate-Source Voltage ±20 V
IDDrain Current- Continuous (Note 1a) ±7.5A
- Pulsed±20
PDMaximum Power Dissipation (Note 1a) 3W
(Note 1b) 1.3
(Note 1c) 1.1
TJ,TSTG Operating and Storage Temperature Range -65 to 150 °C
THERMAL CHARACTERISTICS
RθJA Thermal Resistance, Junction-to-Ambient (Note 1a) 42 °C/W
RθJC Thermal Resistance, Junction-to-Case (Note 1) 12 °C/W
NDS456P Rev. E
-7.5 A, -30 V. RDS(ON) = 0.03 @ VGS = -10 V
RDS(ON) = 0.45 @ VGS = -4.5 V
High density cell design for extremely low RDS(ON).
High power and current handling capability in a
widely used surface mount package.
Power SOT P-Channel enhancement mode power
field effect transistors are produced using
National's proprietary, high cell density, DMOS
technology. This very high density process is
especially tailored to minimize on-state resistance
and provide superior switching performance. These
devices are particularly suited for low voltage
applications such as notebook computer power
management, battery powered circuits, and DC
motor control.
D
DS
G
D
S
G
N
Electrical Characteristics (TA = 25°C unless otherwise noted)
SymbolParameter Conditions Min TypMax Units
OFF CHARACTERISTICS
BVDSS Drain-Source Breakdown Voltage VGS = 0 V, ID = 250 µA -30 V
IDSS Zero Gate Voltage Drain CurrentVDS = -24 V, VGS = 0 V -1 µA
TJ = 55°C -10 µA
IGSSF Gate - Body Leakage, ForwardVGS = 20 V, VDS = 0 V100 nA
IGSSR Gate - Body Leakage, Reverse VGS = -20 V, VDS= 0 V-100 nA
ON CHARACTERISTICS (Note 2)
VGS(th) Gate Threshold Voltage VDS = VGS, ID = - 250 µA -1 -1.5 -3 V
TJ = 125°C -0.5 -1.1 -2.6
RDS(ON) Static Drain-Source On-Resistance VGS = -10 V, ID = -7.5 A 0.0260.03
TJ = 125°C 0.0350.054
VGS = - 4.5 V, ID = -6 A 0.0410.045
ID(on) On-State Drain CurrentVGS = -10 V , VDS = - 5 V -20 A
VGS = -4.5 V, VDS = - 5 V -10
Gfs Forward Transconductance VGS = -10 V, ID = -7.5 A13 S
DYNAMIC CHARACTERISTICS
Ciss Input Capacitance VDS = -15 V, VGS = 0 V,
f = 1.0 MHz
1440 pF
Coss Output Capacitance 905 pF
Crss Reverse Transfer Capacitance 355 pF
SWITCHING CHARACTERISTICS (Note 2)
tD(on)Turn - On Delay Time VDD = -15 V, ID = -7 A,
VGEN = -10 V, RGEN = 12 10 20 ns
trTurn - On Rise Time 65 120 ns
tD(off) Turn - Off Delay Time 70 130 ns
tfTurn - Off Fall Time 70 130 ns
QgTotal Gate Charge VDS = -10 V,
ID = -7.5 A, VGS = -10 V
47 67 nC
Qgs Gate-Source Charge 5nC
Qgd Gate-Drain Charge 12 nC
NDS456P Rev. E
Electrical Characteristics (TA = 25°C unless otherwise noted)
SymbolParameter Conditions Min TypMax Units
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS
ISMaximum Continuous Drain-Source Diode Forward Current-2.5 A
VSD Drain-Source Diode Forward Voltage VGS = 0 V, IS = - 2.5 A (Note 2) - 0.85 -1.2 V
trr Reverse Recovery Time VGS = 0 V, IF = - 2.5 A dIF/dt = 100 A/µs 140 ns
Notes:
1. RθJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference
PD
(
t
)
=
T
J
T
A
R
θJA
(t)=
T
J
T
A
R
θJC
+R
θCA
(t)=ID
2
(
t
)
×RDS(ON)@T
J
is defined as the solder mounting surface of the drain pins. RθJC is guaranteed by design while RθCA is defined by users. For general reference: Applications on 4.5"x5"
FR-4 PCB under still air environment, typical RθJA is found to be:
a. 42oC when mounted on a 1 in2 pad of 2oz copper.
b. 95oC when mounted on a 0.066in2 pad of 2oz copper.
c. 110oC/W when mounted on a 0.00123in2 pad of 2oz copper.
Scale 1 : 1 on letter size paper
2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%.
NDS456P Rev. E
1a 1b 1c
NDS456P Rev. E
-50 -25 0 25 50 75 100 125 150
0.5
0.75
1
1.25
1.5
T , JUNCTION TEMPERATURE (°C)
DRAIN-SOURCE ON-RESISTANCE
J
V = -10V
GS
I =-7.5A
D
R , NORMALIZED
DS(ON)
-20-16-12-8-40
0.5
1
1.5
2
2.5
I , DRAIN CURRENT (A)
DRAIN-SOURCE ON-RESISTANCE
D
R , NORMALIZED
DS(on)
V =-3.5V
GS
-10
-5.0
-7.0
-4.5
-4.0
Typical Electrical Characteristics
Figure 1. On-Region Characteristics. Figure 2. On-Resistance Variation with
Gate Voltage and Drain Current.
Figure 3. On-Resistance Variation with
Temperature.
Figure 4. On-Resistance Variation with
Drain Current and Temperature.
Figure 5. Transfer Characteristics. Figure 6. Gate Threshold Variation
with Temperature.
-4-3.2-2.4-1.6-0.8
-20
-16
-12
-8
-4
0
V , GATE TO SOURCE VOLTAGE (V)
I , DRAIN CURRENT (A)
25125
V =- 10V
DS
GS
D
T = -55°C
J
-20-16-12-8-40
0
0.5
1
1.5
2
2.5
I , DRAIN CURRENT (A)
DRAIN-SOURCE ON-RESISTANCE
V = -10V
GS
T = 125°C
J
25°C
-55°C
D
R , NORMALIZED
DS(on)
-50 -25 025 50 75 100 125 150
0.6
0.7
0.8
0.9
1
1.1
1.2
T , JUNCTION TEMPERATURE (°C)
GATE-SOURCE THRESHOLD VOLTAGE
J
V , NORMALIZED
GS(th)
I =- 250µA
D
V = VGS
DS
-3-2-10
-20
-16
-12
-8
-4
0
V , DRAIN-SOURCE VOLTAGE (V)
I , DRAIN-SOURCE CURRENT (A)
V = -10V
GS
DS
D
-3.5
-4.0
-3.0
-2.5
-4.5
-5.0
-6.0
NDS456P Rev. E
-50 -25 0 25 50 75 100 125 150
0.94
0.96
0.98
1
1.02
1.04
1.06
1.08
1.1
T , JUNCTION TEMPERATURE (°C)
DRAIN-SOURCE BREAKDOWN VOLTAGE
I =- 250µA
D
BV , NORMALIZED
DSS
J
00.2 0.4 0.6 0.8 11.2
0.0001
0.001
0.01
0.1
1
5
20
-V , BODY DIODE FORWARD VOLTAGE (V)
-I , REVERSE DRAIN CURRENT (A)
T = 125°C
J
25°C
-55°C
V = 0V
GS
SD
S
0 10 20 30 40 50 60
0
2
4
6
8
10
Q , GATE CHARGE (nC)
-V , GATE-SOURCE VOLTAGE (V)
g
GS
I = -7.5A
D-10V
-20V
V =- 5V
DS
0.1 0.2 0.5 1 2 5 10 20 30
200
300
400
500
1000
2000
3000
4000
V , DRAIN TO SOURCE VOLTAGE (V)
CAPACITANCE (pF)
DS
f = 1 MHz
V = 0V
GS
C
oss
C
iss
C
rss
Figure 7. Breakdown Voltage
Variation with Temperature. Figure 8. Body Diode Forward Voltage
Variation with Current and
Temperature.
Figure 9. Capacitance Characteristics. Figure 10. Gate Charge Characteristics.
Typical Electrical Characteristics
Figure 11. Switching Test Circuit.Figure 12. Switching Waveforms.
D
S
-VDD
RL
VOUT
VGS
DUT
VIN
RGEN G10%
50%
90%
10%
90%
90%
50%
VIN
VOUT
on off
d(off) f
r
d(on)
t t
tt
t
t
INVERTED
10%
PULSE WIDTH
NDS456P Rev. E
Typical Thermal Characteristics
-10-8-6-4-20
0
3
6
9
12
15
18
I , DRAIN CURRENT (A)
g , TRANSCONDUCTANCE (SIEMENS)
25°C
D
FS
V = -5V
DS
125°C
T = -55°C
J
Figure 13. Transconductance Variation
with Drain Current and Temperature.
00.2 0.4 0.6 0.8 1
0.5
1
1.5
2
2.5
3
3.5
2oz COPPER MOUNTING PAD AREA (in )
STEADY-STATE POWER DISSIPATION (W)
2
1c
1b
1a
4.5"x5" FR-4 Board
T = 25 C
Still Air
Ao
Figure 14. SOT-223 Maximum
Steady-State Power Dissipation
versus Copper Mounting Pad Area.
Figure 17. Transient Thermal Response Curve.
Note: Thermal characterization performed using the conditions described in note 1c.
Transient thermal response will change depending on the circuit board design.
Figure 16. Maximum Safe Operating Area.
00.2 0.4 0.6 0.8 1
0
2
4
6
8
10
2oz COPPER MOUNTING PAD AREA (in )
-I , STEADY-STATE DRAIN CURRENT (A)
2
1c
1b
1a
4.5"x5" FR-4 Board
T = 25 C
Still Air
V = -10V
Ao
GS
D
0.1 0.2 0.5 1 2 5 10 30 50
0.01
0.03
0.1
0.3
1
3
10
20
40
- V , DRAIN-SOURCE VOLTAGE (V)
-I , DRAIN CURRENT (A)
DS
D
RDS(ON) LIMIT
V = -10V
SINGLE PULSE
R = See Note 1c
T = 25°C
GS
A
θJA
100ms
10s
DC
10ms
1ms
1s
100us
Figure 15. Maximum Steady-State
Drain Current versus Copper
Mounting Pad Area.
0.0001 0.001 0.01 0.1 110 100 300
0.001
0.002
0.005
0.01
0.02
0.05
0.1
0.2
0.5
1
t , TIME (sec)
TRANSIENT THERMAL RESISTANCE
r(t), NORMALIZED EFFECTIVE
1
Single Pulse
D = 0.5
0.1
0.05
0.02
0.01
0.2
Duty Cycle, D = t / t
12
R (t) = r(t) * R
R = See Note 1 c
θJA
θJA
θJA
T - T = P * R (t)
θJA
A
J
P(pk)
t
1 t
2