19-3131; Rev 0; 3/08 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA The MAX2065 high-linearity, analog/digital variablegain amplifier (VGA) is designed to operate in the 50MHz to 1000MHz frequency range with two independent attenuators (see the Typical Application Circuit). The digital attenuator is controlled as a slave peripheral using either the SPITM-compatible interface or a parallel bus with 31dB total adjustment range in 1dB steps. An added feature allows "rapid-fire" gain selection between each of four steps, preprogrammed by the user through the SPI-compatible interface. The 2-pin control allows the user to quickly access any one of four customized attenuation states without reprogramming the SPI bus. The analog attenuator is controlled using an external voltage or through the SPI-compatible interface using an on-chip 8-bit DAC. Because each of the three stages has its own RF input and RF output, this component can be configured to either optimize NF (amplifier configured first), OIP3 (amplifier last), or a compromise of NF and OIP3. The device's performance features include 22dB amplifier gain (amplifier only), 6.5dB NF at maximum gain (includes attenuator insertion losses), and a high OIP3 level of +42dBm. Each of these features makes the MAX2065 an ideal VGA for numerous receiver and transmitter applications. In addition, the MAX2065 operates from a single +5V supply with full performance, or a single +3.3V supply with slightly reduced performance, and has an adjustable bias to trade current consumption for linearity performance. This device is available in a compact 40pin thin QFN package (6mm x 6mm) with an exposed pad. Electrical performance is guaranteed over the extended temperature range (TC = -40C to +85C). Applications IF and RF Gain Stages Temperature Compensation Circuits Cellular Band WCDMA and cdma2000(R) Base Stations GSM 850/GSM 900 EDGE Base Stations WiMAX and LTE Base Stations and Customer Premise Equipment Fixed Broadband Wireless Access Wireless Local Loop Military Systems Video-on-Demand (VOD) and DOCSIS(R)Compliant EDGE QAM Modulation Cable Modem Termination Systems (CMTS) SPI is a trademark of Motorola, Inc. Features 50MHz to 1000MHz RF Frequency Range Pin-Compatible Family Includes: MAX2066 (Digital VGA) MAX2067 (Analog VGA) +19.4dB (Typ) Maximum Gain 0.5dB Gain Flatness Over 100MHz Bandwidth 62dB Gain Range (31dB Analog + 31dB Digital) Built-in DAC for Analog Attenuation Control Supports Four "Rapid-Fire" Preprogrammed Attenuator States Quickly Access Any One of Four Customized Attenuation States Without Reprogramming the SPI Bus Ideal for Fast-Attack, High-Level Blocker Protection Prevents ADC Overdrive Condition Excellent Linearity (Configured with Amplifier Last) +42dBm OIP3 +63dBm OIP2 +19dBm Output 1dB Compression Point -67dBc HD2 -83dBc HD3 6.5dB Typical Noise Figure (NF) Fast, 25ns Digital Switching Very Low Digital VGA Amplitude Overshoot/ Undershoot Single +5V Supply (Optional +3.3V Operation) External Current-Setting Resistors Provide Option for Operating Device in Reduced-Power/ Reduced-Performance Mode Ordering Information PART MAX2065ETL+ TEMP RANGE PINPACKAGE PKG CODE -40C to +85C 40 Thin QFN-EP* T4066-3 MAX2065ETL+T -40C to +85C 40 Thin QFN-EP* T4066-3 +Denotes a lead-free package. *EP = Exposed pad. T = Tape and reel. Pin Configuration appears at end of data sheet. cdma2000 is a registered trademark of Telecommunications Industry Association. DOCSIS and CableLabs are registered trademarks of Cable Television Laboratories, Inc. (CableLabs(R)). ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com. 1 MAX2065 General Description MAX2065 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA ABSOLUTE MAXIMUM RATINGS VCC_ to GND ........................................................-0.3V to +5.5V VDD_LOGIC, DATA, CS, CLK, SER/PAR, VDAC_EN, VREF_SELECT.....................................-0.3V to (VCC_ + 0.3V) STATE_A, STATE_B, D0-D4 ....................-0.3V to (VCC_ + 0.3V) AMP_IN, AMP_OUT, VREF_IN, ANALOG_VCTRL ................................-0.3V to (VCC_ + 0.3V) ATTEN1_IN, ATTEN1_OUT, ATTEN2_IN, ATTEN2_OUT...................................................-1.2V to + 1.2V RSET to GND........................................................-0.3V to + 1.2V RF Input Power (ATTEN1_IN, ATTEN1_OUT, ATTEN2_IN, ATTEN2_OUT).......................................+20dBm RF Input Power (AMP_IN)...............................................+18dBm Continuous Power Dissipation (Note 1) ...............................6.5W JA (Notes 2, 3)..............................................................+38C/W JC (Note 3) ...................................................................+10C/W Operating Temperature Range (Note 4) .....TC = -40C to +85C Maximum Junction Temperature .....................................+150C Storage Temperature.........................................-65C to +150C Lead Temperature (soldering, 10s) .................................+300C Note 1: Based on junction temperature TJ = TC + (JC x VCC x ICC). This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a printed-circuit board (PCB). See the Applications Information section for details. The junction temperature must not exceed +150C. Note 2: Junction temperature TJ = TA + (JA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed +150C. Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a 4-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. +3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, high-current (HC) mode, VCC = +3.0V to +3.6V, TC = -40C to +85C. Typical values are at VCC = +3.3V and TC = +25C, unless otherwise noted.) PARAMETER SYMBOL Supply Voltage VCC Supply Current ICC CONDITIONS MIN TYP MAX 3.0 3.3 3.6 UNITS V 60 80 mA LOGIC INPUTS (DATA, CS, CLK, VDAC_EN, VREF_SELECT, SER/PAR, STATE_A, STATE_B, D0-D4) Input High Voltage VIH 2 V Input Low Voltage VIL 0.8 V +5V SUPPLY DC ELECTRICAL CHARACTERISTICS ( Typical Application Circuit , V CC = +4.75V to +5.25V, T C = -40C to +85C. Typical values are at V CC = +5V and TC = +25C, unless otherwise noted.) PARAMETER SYMBOL Supply Voltage VCC Supply Current ICC CONDITIONS MIN TYP MAX UNITS 4.75 5 5.25 V Low-current (LC) mode 73 93 High-current (HC) mode 124 146 mA LOGIC INPUTS (DATA, CS, CLK, VDAC_EN, VREF_SELECT, SER/PAR, STATE_A, STATE_B, D0-D4) Input High Voltage VIH Input Low Voltage VIL Input Current Logic-High IIH Input Current Logic-Low IIL 2 3 V 0.8 V -1 +1 A -1 +1 A _______________________________________________________________________________________ 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA (Typical Application Circuit, VCC = +3.0V to +3.6V, TC = -40C to +85C. Typical values are at VCC = +3.3V, HC mode with attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25oC, unless otherwise noted.) (Note 5) PARAMETER SYMBOL RF Frequency Range fRF Small Signal Gain G Output Third-Order Intercept Point Noise Figure OIP3 NF Total Attenuation Range CONDITIONS (Notes 6, 7) MIN TYP 50 POUT = 0dBm/tone, maximum gain setting MAX UNITS 1000 MHz 18.8 dB 37.5 dBm Maximum gain setting 6.7 dB Analog and digital combined 61.5 dB +5V SUPPLY AC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, VCC = +4.75 to +5.25V, HC mode with each attenuator set for maximum gain, 50MHz fRF 1000MHz, TC = -40C to +85C. Typical values are at VCC = +5.0V, HC mode, PIN = -20dBm, fRF = 200MHz, and TC = +25oC, unless otherwise noted.) (Note 5) PARAMETER RF Frequency Range SYMBOL fRF CONDITIONS (Notes 6, 7) MIN 50 200MHz G 17.5 Noise Figure NF Total Attenuation Range Output Second-Order Intercept Point OIP2 18.2 750MHz 16.4 900MHz 15.6 OIP3 UNITS 1000 MHz 19.7 dB -0.006 dB/C Any 100MHz frequency band from 50MHz to 500MHz 0.5 dB 200MHz 6.5 350MHz, TC = +25C (Note 7) 6.8 450MHz 7 8 dB 750MHz 7.8 900MHz 8.2 Analog and digital combined 61.5 dB 63 dBm POUT = 0dBm/tone, f = 1MHz, f1 + f2 200MHz 42 350MHz 40 450MHz 39 750MHz 36 900MHz 35 200MHz 40 350MHz POUT = 0dBm/tone, 450MHz LC mode, f = 1MHz 750MHz 38 900MHz 33 POUT = 0dBm/tone, HC mode, f = 1MHz Output Third-Order Intercept Point 18.7 450MHz Gain Variation vs. Temperature Gain Flatness vs. Frequency MAX 19.4 350MHz, TC = +25C Small Signal Gain TYP dBm 37 35 _______________________________________________________________________________________ 3 MAX2065 +3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS MAX2065 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA +5V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued) (Typical Application Circuit, VCC = +4.75 to +5.25V, HC mode with each attenuator set for maximum gain, 50MHz fRF 1000MHz, TC = -40C to +85C. Typical values are at VCC = +5.0V, HC mode, PIN = -20dBm, fRF = 200MHz, and TC = +25oC, unless otherwise noted.) (Note 5) PARAMETER MIN TYP 350MHz, TC = +25C (Note 8) 17 18.7 dBm Second Harmonic POUT = +3dBm, fRF = 200MHz, TC = +25C (Note 7) -60 -67 dBc Third Harmonic POUT = +3dBm, fRF = 200MHz, TC = +25C (Note 7) -71 -83 dBc Input Return Loss 50 source, maximum gain setting 18 dB Output Return Loss 50 load, maximum gain setting 18 dB 2.5 dB 52 dBm 41 dBm Output -1dB Compression Point SYMBOL P1dB CONDITIONS MAX UNITS DIGITAL ATTENUATOR Insertion Loss Input Second-Order Intercept Point IIP2 PRF1 = 0dBm, PRF2 = 0dBm, f = 1MHz, f1 + f2 Input Third-Order Intercept Point IIP3 PRF1 = 0dBm, PRF2 = 0dBm, f = 1MHz Attenuation Range 31.2 dB 1 dB Relative Step Accuracy 0.2 dB Absolute Step Accuracy 0.45 dB Step Size 0dB to 16dB Insertion Phase Step fRF = 170MHz 4.8 24dB 8 31dB 10.8 ET = 15ns 1.0 ET = 40ns 0.05 Degrees Amplitude Overshoot/Undershoot Between any two states Switching Speed RF settled to within 0.1dB Input Return Loss 50 source 19 dB Output Return Loss 50 load 19 dB 1.2 dB 31dB to 0dB 25 0dB to 31dB 21 dB ns ANALOG ATTENUATOR Insertion Loss Input Second-Order Intercept Point IIP2 PRF1 = 0dBm, PRF2 = 0dBm, maximum gain setting, f = 1MHz, f1 + f2 70 dBm Input Third-Order Intercept Point IIP3 PRF1 = 0dBm, PRF2 = 0dBm, maximum gain setting, f = 1MHz 36 dBm dB Attenuation Range Analog control input 31.1 Gain Control Slope Analog control input -12.5 dB/V Maximum Gain Control Slope Over analog control input range -35 dB/V Insertion Phase Change Over analog control input range 18 Degrees Group Delay Maximum gain setting 0.98 ns Group Delay vs. Control Voltage Over analog control input range -0.25 ns Analog Control Input Range 4 0.25 _______________________________________________________________________________________ 2.75 V 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA (Typical Application Circuit, VCC = +4.75 to +5.25V, HC mode with each attenuator set for maximum gain, 50MHz fRF 1000MHz, TC = -40C to +85C. Typical values are at VCC = +5.0V, HC mode, PIN = -20dBm, fRF = 200MHz, and TC = +25oC, unless otherwise noted.) (Note 5) PARAMETER SYMBOL CONDITIONS MIN Analog Control Input Impedance TYP MAX UNITS 80 k Input Return Loss 50 source 22 dB Output Return Loss 50 load 22 dB 8 Bits D/A CONVERTER Number of Bits DAC code = 00000000 Output Voltage DAC code = 11111111 0.25 2.75 V SERIAL PERIPHERAL INTERFACE (SPI) Maximum Clock Speed fCLK 20 MHz Data-to-Clock Setup Time tCS 2 ns Data-to-Clock Hold Time tCH 2.5 ns Clock-to-CS Setup Time tES 3 ns CS Positive Pulse Width tEW 7 ns CS Setup Time tEWS 3.5 ns Clock Pulse Width tCW 5 ns Note 5: All limits include external component losses. Output measurements are performed at RF output port of the Typical Application Circuit. Note 6: Operating outside this range is possible, but with degraded performance of some parameters. Note 7: Guaranteed by design and characterization. Note 8: It is advisable not to operate continuously the VGA RF input above +15dBm. _______________________________________________________________________________________ 5 MAX2065 +5V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued) Typical Operating Characteristics (VCC = +5.0V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25C, internal DAC reference used, unless otherwise noted.) TC = -40C 130 120 19 21 20 TC = +25C GAIN (dB) TC = +25C GAIN (dB) 18 TC = +85C 16 TC = +85C 5.000 5.125 5.250 250 450 650 850 50 1050 450 650 850 RF FREQUENCY (MHz) GAIN OVER DIGITAL ATTENUATOR SETTING vs. RF FREQUENCY DIGITAL ATTENUATOR RELATIVE ERROR vs. RF FREQUENCY DIGITAL ATTENUATOR ABSOLUTE ERROR vs. RF FREQUENCY 0.50 ABSOLUTE ERROR (dB) 0.50 0.25 0 -0.25 -0.50 450 650 850 1050 -0.25 -0.50 -0.75 -1.00 -1.25 -1.70 -2.00 -1.00 250 0.25 0 -1.50 -0.75 -18 1050 MAX2065 toc06 0.75 RELATIVE ERROR (dB) 2 1.00 0.75 MAX2065 toc05 MAX2065 toc04 1.00 -8 50 250 450 650 850 50 1050 250 450 650 850 1050 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT MATCH OVER DIGITAL ATTENUATOR SETTING vs. RF FREQUENCY OUTPUT MATCH OVER DIGITAL ATTENUATOR SETTING vs. RF FREQUENCY REVERSE ISOLATION OVER DIGITAL ATTENUATOR SETTING vs. RF FREQUENCY 0dB, 8dB -10 -5 OUTPUT MATCH (dB) 16dB 1dB, 2dB -15 -20 0dB, 1dB, 2dB, 4dB REVERSE ISOLATION (dB) -5 8dB -10 -15 -20 16dB, 31dB -25 -30 MAX2065 toc08 0 MAX2065 toc07 0 -40 DIGITAL ATTENUATOR 0dB -50 DIGITAL ATTENUATOR 31dB -60 -25 4dB 31dB -30 -70 -30 0 200 400 600 RF FREQUENCY (MHz) 6 250 RF FREQUENCY (MHz) 12 GAIN (dB) 14 50 VCC (V) 22 50 VCC = 4.75V 15 14 4.875 VCC = 5.00V 16 15 100 4.750 18 17 17 110 VCC = 5.25V 19 MAX2065 toc09 SUPPLY CURRENT (mA) 21 20 22 MAX2065 toc02 MAX2065 toc01 TC = -40C 140 GAIN vs. RF FREQUENCY GAIN vs. RF FREQUENCY 22 MAX2065 toc03 SUPPLY CURRENT vs. VCC 150 INPUT MATCH (dB) MAX2065 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA 800 1000 0 200 400 600 RF FREQUENCY (MHz) 800 1000 50 250 450 650 RF FREQUENCY (MHz) _______________________________________________________________________________________ 850 1050 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA MAX2065 toc11 12 DAC CODE 32 7 DAC CODE 64 2 -3 10 REFERENCED TO HIGH GAIN STATE POSITIVE PHASE = ELECTRICALLY SHORTER 50 250 450 650 7 2 1000MHz 450MHz -3 DAC CODE 128 DAC CODE 256 -8 -8 -13 -13 -18 -18 50 1050 850 200MHz 250 450 650 0 1050 850 32 64 96 224 256 128 160 192 RF FREQUENCY (MHz) RF FREQUENCY (MHz) DAC CODE GAIN vs. ANALOG ATTENUATOR SETTING GAIN vs. ANALOG ATTENUATOR SETTING INPUT MATCH vs. ANALOG ATTENUATOR SETTING RF = 200MHz 17 12 7 7 GAIN (dB) 12 2 -3 -8 -8 -13 -13 -18 -5 VCC = 4.75V, 5.00V, 5.25V 2 -3 0 32 64 96 128 160 192 450MHz 50MHz 200MHz -20 -30 0 32 64 96 128 160 192 224 256 0 32 64 96 224 256 128 160 192 DAC CODE DAC CODE OUTPUT MATCH vs. ANALOG ATTENUATOR SETTING REVERSE ISOLATION OVER ANALOG ATTENUATOR SETTING vs. RF FREQUENCY S21 PHASE CHANGE vs. ANALOG ATTENUATOR SETTING -15 -20 200MHz MAX2065 toc17 80 -40 DAC CODE 0 -50 DAC CODE 255 -60 REFERENCED TO HIGH GAIN STATE POSITIVE PHASE = ELECTRICALLY SHORTER 70 S21 PHASE CHANGE (DEG) REVERSE ISOLATION (dB) 1000MHz -10 50MHz -30 MAX2065 toc16 450MHz -25 1000MHz -15 DAC CODE 0 -5 224 256 -10 -25 -18 0 MAX2065 toc15 TC = -40C, +25C, +85C 22 INPUT MATCH (dB) RF = 200MHz 17 MAX2065 toc14 22 60 1000MHz 50 MAX2065 toc18 20 50MHz 17 GAIN (dB) GAIN (dB) 30 -10 OUTPUT MATCH (dB) 22 12 40 0 GAIN (dB) DAC CODE 0 17 MAX2065 toc13 S21 PHASE CHANGE (DEG) 50 GAIN vs. ANALOG ATTENUATOR SETTING 22 MAX2065 toc10 60 GAIN OVER ANALOG ATTENUATOR SETTING vs. RF FREQUENCY MAX2065 toc12 S21 PHASE CHANGE OVER DIGITAL ATTENUATOR SETTING vs. RF FREQUENCY 450MHz 40 30 200MHz 20 10 0 -30 0 32 64 96 128 160 192 DAC CODE 224 256 50MHz -10 -70 50 250 450 650 RF FREQUENCY (MHz) 850 1050 0 32 64 96 128 160 192 224 258 DAC CODE _______________________________________________________________________________________ 7 MAX2065 Typical Operating Characteristics (continued) (VCC = +5.0V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25C, internal DAC reference used, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = +5.0V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25C, internal DAC reference used, unless otherwise noted.) 8 7 6 VCC = 5.00V 7 VCC = 5.25V 6 TC = -40C 5 450 650 1050 850 50 250 RF FREQUENCY (MHz) OUTPUT P1dB vs. RF FREQUENCY 650 850 50 1050 250 MAX2065 toc22 50 POUT = 0dBm/TONE 17 VCC = 4.75V 850 1050 POUT = 0dBm/TONE 45 OUTPUT IP3 (dBm) OUTPUT IP3 (dBm) 18 650 OUTPUT IP3 vs. RF FREQUENCY 50 45 VCC = 5.00V 450 RF FREQUENCY (MHz) OUTPUT IP3 vs. RF FREQUENCY VCC = 5.25V 19 TC = -40C 17 RF FREQUENCY (MHz) 21 20 450 MAX2065 toc23 250 18 15 4 50 19 16 5 4 OUTPUT P1dB (dBm) TC = +25C 9 8 TC = +85C 20 MAX2065 toc24 TC = +25C VCC = 4.75V OUTPUT P1dB (dBm) 9 10 21 MAX2065 toc20 MAX2065 toc19 TC = +85C NOISE FIGURE (dB) NOISE FIGURE (dB) 10 OUTPUT P1dB vs. RF FREQUENCY NOISE FIGURE vs. RF FREQUENCY 11 MAX2065 toc21 NOISE FIGURE vs. RF FREQUENCY 11 TC = +25C 40 35 VCC = 5.00V VCC = 5.25V 40 35 TC = -40C VCC = 4.75V 16 TC = +85C 30 30 250 450 650 850 1050 50 450 650 850 RF FREQUENCY (MHz) RF FREQUENCY (MHz) OUTPUT IP3 vs. DIGITAL ATTENUATOR STATE OUTPUT IP3 vs. ANALOG ATTENUATOR STATE POUT = -3dBm/TONE RF = 200MHz TC = +25C LSB, USB 45 MAX2065 toc25 42 POUT = -3dBm/TONE RF = 200MHz 50 1050 TC = +85C LSB, USB 35 25 8 12 16 20 24 DIGITAL ATTENUATOR STATE (dB) 28 32 1050 POUT = 3dBm TC = -40C 70 60 TC = +25C TC = +85C TC = -40C, +25C, +85C TONE = LSB, USB 38 4 850 50 TC = -40C LSB, USB 0 650 2nd HARMONIC vs. RF FREQUENCY 30 39 450 80 2nd HARMONIC (dBc) OUTPUT IP3 (dBm) 40 250 RF FREQUENCY (MHz) 40 41 8 250 MAX2065 toc27 50 MAX2065 toc26 15 OUTPUT IP3 (dBm) MAX2065 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA 0 32 64 96 128 160 192 224 256 DAC CODE 40 50 250 450 650 RF FREQUENCY (MHz) _______________________________________________________________________________________ 850 1050 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA VCC = 4.75V 70 TC = +25C TC = +85C 65 50 TC = +25C 70 65 TC = +85C 250 50 450 650 0 1050 4 8 16 20 24 28 0 32 64 96 128 160 192 224 256 DAC CODE 3rd HARMONIC vs. RF FREQUENCY 3rd HARMONIC vs. RF FREQUENCY 3rd HARMONIC vs. DIGITAL ATTENUATOR STATE 80 70 60 MAX2065 toc32 VCC = 5.25V VCC = 5.00V 90 80 70 TC = -40C 100 VCC = 4.75V 450 650 850 1050 250 RF FREQUENCY (MHz) 95 TC = +25C 450 650 850 TC = -40C 60 55 TC = -40C TC = +25C 50 70 96 128 160 192 224 256 DAC CODE 20 24 28 32 POUT = 0dBm/TONE VCC = 5.00V VCC = 5.25V 60 55 VCC = 4.75V 45 40 40 64 16 70 50 TC = +85C 45 12 OIP2 vs. RF FREQUENCY 65 80 TC = +85C 8 75 OIP2 (dBm) OIP2 (dBm) 85 4 DIGITAL ATTENUATOR STATE (dB) 65 32 TC = -40C 0 1050 POUT = 0dBm/TONE 70 90 75 80 OIP2 vs. RF FREQUENCY 75 MAX2065 toc34 POUT = 0dBm RF = 200MHz 85 RF FREQUENCY (MHz) 3rd HARMONIC vs. ANALOG ATTENUATOR STATE 100 90 70 50 MAX2065 toc35 250 TC = +85C 75 60 50 POUT = 0dBm RF = 200MHz TC = +25C 95 3rd HARMONIC (dBc) TC = +25C 90 POUT = 3dBm 100 3rd HARMONIC (dBc) TC = +85C 110 MAX2065 toc31 POUT = 3dBm 0 32 DIGITAL ATTENUATOR STATE (dB) 100 3rd HARMONIC (dBc) 12 RF FREQUENCY (MHz) 110 3rd HARMONIC (dBc) 850 TC = -40C 60 60 40 MAX2065 toc30 75 MAX2065 toc33 60 75 POUT = 0dBm RF = 200MHz MAX2065 toc36 VCC = 5.00V 80 2nd HARMONIC (dBc) 70 POUT = 0dBm RF = 200MHz TC = -40C 2nd HARMONIC (dBc) 2nd HARMONIC (dBc) VCC = 5.25V 80 MAX2065 toc29 POUT = 3dBm MAX2065 toc28 80 2nd HARMONIC vs. ANALOG ATTENUATOR STATE 2nd HARMONIC vs. DIGITAL ATTENUATOR STATE 2nd HARMONIC vs. RF FREQUENCY 50 250 450 650 RF FREQUENCY (MHz) 850 1050 50 250 450 650 850 1050 RF FREQUENCY (MHz) _______________________________________________________________________________________ 9 MAX2065 Typical Operating Characteristics (continued) (VCC = +5.0V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25C, internal DAC reference used, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = +5.0V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25C, internal DAC reference used, unless otherwise noted.) POUT = -3dBm/TONE RF = 200MHz TC = +25C MAX2065 toc37 TC = -40C 70 OIP2 vs. ANALOG ATTENUATOR STATE 75 70 TC = +25C 65 OIP2 (dBm) OIP2 (dBm) 65 60 55 POUT = -3dBm/TONE RF = 200MHz TC = -40C MAX2065 toc38 OIP2 vs. DIGITAL ATTENUATOR STATE 75 60 55 TC = +85C 50 50 45 45 40 TC = +85C 40 0 4 8 12 16 20 24 28 0 32 32 64 DIGITAL ATTENUATOR STATE (dB) 128 160 192 224 256 DAC VOLTAGE vs. DAC CODE 2.0 1.5 1.0 MAX2065 toc40 MAX2065 toc39 3.0 2.5 DAC VOLTAGE (V) 2.0 1.5 1.0 TC = -40C, +25C, +85C VCC = 4.75V, 5.00V, 5.25V 0.5 0.5 0 0 0 32 64 96 128 160 192 224 256 0 32 64 DAC CODE 0.02 0.01 0 -0.01 -0.02 0.0075 DAC VOLTAGE CHANGE (V) TC CHANGED FROM +25C TO -40C 0.03 DAC VOLTAGE DRIFT vs. DAC CODE 0.0100 MAX2065 toc41 0.04 128 160 192 224 256 DAC CODE DAC VOLTAGE DRIFT vs. DAC CODE 0.05 96 VCC CHANGED FROM 5.00V TO 5.25V MAX2065 toc42 DAC VOLTAGE (V) 2.5 96 DAC CODE DAC VOLTAGE vs. DAC CODE 3.0 DAC VOLTAGE CHANGE (V) MAX2065 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA 0.0050 0.0025 0 -0.0025 -0.0050 -0.03 TC CHANGED FROM +25C TO +85C -0.04 -0.05 -0.0100 0 32 64 96 128 160 192 224 256 DAC CODE 10 VCC CHANGED FROM 5.00V TO 4.75V -0.0075 0 32 64 96 128 160 192 224 256 DAC CODE ______________________________________________________________________________________ 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA GAIN vs. RF FREQUENCY (DIGITAL ATTENUATOR ONLY) MAXIMUM GAIN SETTING MAXIMUM GAIN SETTING -1 TC = -40C VCC = 5.25V TC = +25C -2 GAIN (dB) GAIN (dB) -1 0 MAX2065 toc43 0 MAX2065 toc44 GAIN vs. RF FREQUENCY (DIGITAL ATTENUATOR ONLY) -3 -2 -3 VCC = 5.00V -4 -4 VCC = 4.75V TC = +85C -5 250 450 650 850 1050 450 650 850 GAIN vs. RF FREQUENCY (ANALOG ATTENUATOR ONLY) GAIN vs. RF FREQUENCY (ANALOG ATTENUATOR ONLY) MAXIMUM GAIN SETTING TC = -40C -1 -2 TC = +85C TC = +25C -4 1050 0 MAXIMUM GAIN SETTING -1 GAIN (dB) GAIN (dB) 250 RF FREQUENCY (MHz) 0 -3 50 RF FREQUENCY (MHz) MAX2065 toc45 50 MAX2065 toc46 -5 -2 VCC = 4.75V, 5.00V, 5.25V -3 -4 -5 -5 50 250 450 650 RF FREQUENCY (MHz) 850 1050 50 250 450 650 850 1050 RF FREQUENCY (MHz) ______________________________________________________________________________________ 11 MAX2065 Typical Operating Characteristics (continued) (VCC = +5.0V, attenuator only, maximum gain, PIN = -20dBm and TC = +25C, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = +5.0V, LC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25C, internal reference used, unless otherwise noted.) TC = -40C TC = +25C TC = +85C TC = +85C 16 15 5.000 5.125 50 250 450 650 850 50 1050 250 450 650 850 1050 RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT MATCH OVER DIGITAL ATTENUATOR SETTING vs. RF FREQUENCY OUTPUT MATCH OVER DIGITAL ATTENUATOR SETTING vs. RF FREQUENCY INPUT MATCH vs. ANALOG ATTENUATOR SETTING (LOW CURRENT MODE) 0dB, 8dB 1dB, 2dB -15 -20 -25 8dB -10 -15 -20 -5 16dB, 31dB -25 4dB 50MHz 1000MHz -15 200MHz 450MHz -20 -25 -30 -30 250 -10 31dB -30 50 MAX2065 toc52 0dB, 1dB, 2dB, 4dB INPUT MATCH (dB) OUTPUT MATCH (dB) 16dB -10 -5 0 MAX2065 toc51 0 MAX2065 toc50 -5 450 650 850 1050 50 250 450 650 850 0 1050 32 64 96 128 160 192 224 256 RF FREQUENCY (MHz) RF FREQUENCY (MHz) DAC CODE OUTPUT MATCH vs. ANALOG ATTENUATOR SETTING (LOW CURRENT MODE) NOISE FIGURE vs. RF FREQUENCY (LOW CURRENT MODE) NOISE FIGURE vs. RF FREQUENCY (LOW CURRENT MODE) NOISE FIGURE (dB) -15 -20 TC = +25C 9 8 7 5 -30 32 64 96 128 160 192 224 256 DAC CODE 8 7 4 4 0 VCC = 4.75V, 5.00V, 5.25V 9 5 TC = -40C 200MHz 50MHz 10 6 6 -25 11 MAX2065 toc55 10 1000MHz -10 TC = +85C NOISE FIGURE (dB) 450MHz -5 11 MAX2065 toc53 0 MAX2065 toc54 INPUT MATCH (dB) 5.250 VCC (V) 0 12 14 14 4.857 18 16 15 55 4.750 19 17 17 65 VCC = 4.75V, 5.00V, 5.25V 20 19 18 21 GAIN (dB) 75 GAIN (dB) SUPPLY CURRENT (mA) 21 20 22 MAX2065 toc48 TC = -40C TC = +25C 22 MAX2065 toc47 85 GAIN vs. RF FREQUENCY (LOW CURRENT MODE) GAIN vs. RF FREQUENCY (LOW CURRENT MODE) MAX2065 toc49 SUPPLY CURRENT vs. VCC (LOW CURRENT MODE) OUTPUT MATCH (dB) MAX2065 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA 50 250 450 650 RF FREQUENCY (MHz) 850 1050 50 250 450 650 RF FREQUENCY (MHz) ______________________________________________________________________________________ 850 1050 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA 15 14 TC = +25C VCC = 5.00V 40 OUTPUT IP3 (dBm) 16 VCC = 5.25V 17 OUTPUT P1dB (dBm) TC = +25C 45 MAX2065 toc57 TC = -40C OUTPUT P1dB (dBm) 18 MAX2065 toc56 18 17 OUTPUT IP3 vs. RF FREQUENCY (LOW CURRENT MODE) OUTPUT P1dB vs. RF FREQUENCY (LOW CURRENT MODE) MAX2065 toc58 OUTPUT P1dB vs. RF FREQUENCY (LOW CURRENT MODE) VCC = 4.75V 16 15 TC = -40C 35 TC = +85C 30 14 TC = +85C 13 250 450 650 850 1050 450 650 850 250 50 1050 450 650 850 1050 RF FREQUENCY (MHz) OUTPUT IP3 vs. RF FREQUENCY (LOW CURRENT MODE) OUTPUT IP3 vs. DIGITAL ATTENUATOR STATE (LOW CURRENT MODE) OUTPUT IP3 vs. ANALOG ATTENUATOR STATE (LOW CURRENT MODE) 45 OUTPUT IP3 (dBm) 35 VCC = 4.75V POUT = -3dBm/TONE RF = 200MHz 40 40 VCC = 5.25V 35 OUTPUT IP3 (dBm) VCC = 5.00V POUT = -3dBm/TONE RF = 200MHz TC = +25C LSB, USB MAX2065 toc60 MAX2065 toc59 45 MAX2065 toc61 RF FREQUENCY (MHz) 40 30 250 50 RF FREQUENCY (MHz) 45 OUTPUT IP3 (dBm) 25 13 50 TC = +85C LSB, USB TC = -40C LSB, USB 35 30 30 TC = -40C, +25C, +85C TONE = LSB, USB 25 250 450 650 850 1050 0 4 8 12 16 20 24 28 0 32 32 64 98 128 160 192 224 256 DIGITAL ATTENUATOR STATE (dB) DAC CODE 2nd HARMONIC vs. RF FREQUENCY (LOW CURRENT MODE) 2nd HARMONIC vs. RF FREQUENCY (LOW CURRENT MODE) 2nd HARMONIC vs. DIGITAL ATTENUATOR STATE (LOW CURRENT MODE) 60 TC = +25C 50 MAX2065 toc63 VCC = 5.25V 70 80 POUT = 0dBm RF = 200MHz 2nd HARMONIC (dBc) TC = -40C POUT = 3dBm VCC = 5.00V 2nd HARMONIC (dBc) 70 80 MAX2065 toc62 POUT = 3dBm 60 VCC = 4.75V TC = -40C 75 70 TC = +85C 65 50 MAX2065 toc64 RF FREQUENCY (MHz) 80 2nd HARMONIC (dBc) 25 25 50 TC = +25C TC = +85C 40 60 40 50 250 450 650 RF FREQUENCY (MHz) 850 1050 50 250 450 650 RF FREQUENCY (MHz) 850 1050 0 4 8 12 16 20 24 28 32 DIGITAL ATTENUATOR STATE (dB) ______________________________________________________________________________________ 13 MAX2065 Typical Operating Characteristics (continued) (VCC = +5.0V, LC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25C, internal reference used, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = +5.0V, LC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25C, internal reference used, unless otherwise noted.) 65 TC = +25C 80 70 64 96 80 VCC = 4.75V 60 32 VCC = 5.00V TC = +85C 60 0 VCC = 5.25V 90 70 TC = -40C TC = +85C 128 160 192 224 256 60 250 50 450 650 850 1050 250 50 450 650 RF FREQUENCY (MHz) RF FREQUENCY (MHz) 3rd HARMONIC vs. DIGITAL ATTENUATOR STATE (LOW CURRENT MODE) 3rd HARMONIC vs. ANALOG ATTENUATOR STATE (LOW CURRENT MODE) OIP2 vs. RF FREQUENCY (LOW CURRENT MODE) 90 85 80 TC = -40C 75 MAX2065 toc69 TC = +25C POUT = 0dBm/TONE 70 65 90 85 80 TC = -40C 60 55 TC = +25C 50 75 45 TC = +85C TC = +85C TC = -40C 40 70 70 8 12 16 20 24 28 64 96 128 250 450 650 850 OIP2 vs. RF FREQUENCY (LOW CURRENT MODE) OIP2 vs. DIGITAL ATTENUATOR STATE (LOW CURRENT MODE) OIP2 vs. ANALOG ATTENUATOR STATE (LOW CURRENT MODE) POUT = 0dBm/TONE 75 TC = -40C 70 VCC = 5.25V TC = +25C POUT = -3dBm/TONE RF = 200MHz 55 45 40 65 60 55 60 55 50 50 45 45 40 450 POUT = -3dBm/TONE RF = 200MHz TC = -40C TC = +85C VCC = 4.75V 250 70 OIP2 (dBm) 60 1050 75 65 OIP2 (dBm) 65 50 50 160 192 224 256 RF FREQUENCY (MHz) VCC = 5.00V 50 32 DAC CODE 75 70 0 32 DIGITAL ATTENUATOR STATE (dB) MAX2065 toc72 4 MAX2065 toc71 0 1050 75 OIP2 (dBm) TC = +85C POUT = 0dBm RF = 200MHz 95 3rd HARMONIC (dBc) TC = +25C 100 MAX2065 toc68 POUT = 0dBm RF = 200MHz 95 650 RF FREQUENCY (MHz) 14 850 DAC CODE 100 3rd HARMONIC (dBc) 100 MAX2065 toc70 70 90 POUT = 3dBm MAX2065 toc73 TC = +25C MAX2065 toc67 100 110 3rd HARMONIC (dBc) TC = -40C 75 POUT = 3dBm 3rd HARMONIC (dBc) 2nd HARMONIC (dBc) POUT = 0dBm RF = 200MHz 3rd HARMONIC vs. RF FREQUENCY (LOW CURRENT MODE) 110 MAX2065 toc65 80 3rd HARMONIC vs. RF FREQUENCY (LOW CURRENT MODE) MAX2065 toc66 2nd HARMONIC vs. ANALOG ATTENUATOR STATE (LOW CURRENT MODE) OIP2 (dBm) MAX2065 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA 850 1050 TC = +85C TC = +25C 40 0 4 8 12 16 20 24 DIGITAL ATTENUATOR STATE (dB) 28 32 0 32 64 96 128 160 192 224 DAC CODE ______________________________________________________________________________________ 256 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA GAIN vs. RF FREQUENCY TC = -40C 20 VCC = 3.6V 19 19 VCC = 3.0V TC = +25C 18 GAIN (dB) 17 TC = +25C TC = +85C TC = +85C 14 13 3.00 3.15 3.30 3.45 3.60 VCC = 3.3V 15 14 45 17 16 16 55 18 13 50 250 450 650 850 1050 50 250 450 650 850 1050 VCC (V) RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT MATCH OVER DIGITAL ATTENUATOR SETTING vs. RF FREQUENCY OUTPUT MATCH OVER DIGITAL ATTENUATOR SETTING vs. RF FREQUENCY INPUT MATCH vs. ANALOG ATTENUATOR SETTING 1dB, 2dB 16dB -5 -15 -20 0dB, 1dB, 2dB, 4dB 0 VCC = 3.3V -5 INPUT MATCH (dB) 0dB, 8dB -10 VCC = 3.3V OUTPUT MATCH (dB) -5 0 MAX2065 toc78 VCC = 3.3V MAX2065 toc77 0 -10 -15 -20 -10 MAX2065 toc79 65 15 INPUT MATCH (dB) 21 MAX2065 toc75 MAX2065 toc74 VCC = 3.3V 20 GAIN (dB) SUPPLY CURRENT (mA) TC = -40C GAIN vs. RF FREQUENCY 21 MAX2065 toc76 SUPPLY CURRENT vs. VCC 75 1000MHz 50MHz -15 200MHz 450MHz -20 8dB -25 16dB, 31dB -25 -30 -30 250 450 650 850 1050 0 200 RF FREQUENCY (MHz) 800 VCC = 3.3V -5 TC = +85C 9 8 7 6 200MHz 96 128 160 192 DAC CODE 224 256 VCC = 3.0V 9 8 7 VCC = 3.6V 5 TC = -40C 4 64 224 256 VCC = 3.3V 6 TC = +25C 5 -30 128 160 192 10 NOISE FIGURE (dB) -20 96 NOISE FIGURE vs. RF FREQUENCY VCC = 3.3V 10 NOISE FIGURE (dB) -15 32 64 11 1000MHz 50MHz 32 DAC CODE NOISE FIGURE vs. RF FREQUENCY -10 0 0 1000 11 MAX2065 toc80 0 -25 600 RF FREQUENCY (MHz) OUTPUT MATCH vs. ANALOG ATTENUATOR SETTING 450MHz 400 MAX2065 toc81 50 MAX2065 toc82 -30 OUTPUT MATCH (dB) -25 31dB 4dB 4 50 250 450 650 RF FREQUENCY (MHz) 850 1050 50 250 450 650 850 RF FREQUENCY (MHz) ______________________________________________________________________________________ 15 MAX2065 Typical Operating Characteristics (continued) (VCC = +3.3V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25C, internal DAC reference used, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = +3.3V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25C, internal DAC reference used, unless otherwise noted.) OUTPUT P1dB vs. RF FREQUENCY 13 TC = +85C 14 13 12 11 10 10 9 9 250 450 650 850 1050 TC = -40C 35 30 VCC = 3.0V 25 TC = +85C 20 250 50 450 650 850 1050 50 250 450 650 OUTPUT IP3 vs. DIGITAL ATTENUATOR STATE OUTPUT IP3 vs. ANALOG ATTENUATOR STATE 38 30 37 36 30 TC = -40C, +25C, +85C TONE = LSB, USB 34 250 450 650 850 25 0 1050 35 TC = -40C, +25C, +85C TONE = LSB, USB VCC = 3.0V 20 POUT = -3dBm/TONE RF = 200MHz VCC = 3.3V 40 35 25 45 OUTPUT IP3 (dBm) OUTPUT IP3 (dBm) 35 POUT = -3dBm/TONE RF = 200MHz VCC = 3.3V MAX2065 toc87 39 MAX2065 toc86 VCC = 3.6V 4 8 12 16 20 24 28 32 0 32 64 96 128 160 192 224 256 RF FREQUENCY (MHz) DIGITAL ATTENUATOR STATE (dB) DAC CODE 2nd HARMONIC vs. RF FREQUENCY 2nd HARMONIC vs. RF FREQUENCY 2nd HARMONIC vs. DIGITAL ATTENUATOR STATE 50 VCC = 3.3V 70 70 VCC = 3.6V 60 50 POUT = 0dBm RF = 200MHz VCC = 3.3V TC = +85C 2nd HARMONIC (dBc) TC = +85C 60 POUT = 3dBm MAX2065 toc90 TC = +25C 80 2nd HARMONIC (dBc) POUT = 3dBm VCC = 3.3V MAX2065 toc89 80 65 60 TC = +25C 55 40 TC = -40C TC = -40C VCC = 3.0V 30 250 450 650 RF FREQUENCY (MHz) 16 50 30 50 1050 OUTPUT IP3 vs. RF FREQUENCY 40 40 850 RF FREQUENCY (MHz) VCC = 3.3V 70 TC = +25C RF FREQUENCY (MHz) 45 50 40 RF FREQUENCY (MHz) 50 OUTPUT IP3 (dBm) 15 11 50 VCC = 3.3V 45 850 1050 MAX2065 toc88 14 12 VCC = 3.6V MAX2065 toc91 15 VCC = 3.3V 16 OUTPUT IP3 (dBm) TC = +25C OUTPUT P1dB (dBm) OUTPUT P1dB (dBm) TC = -40C 50 MAX2065 toc84 MAX2065 toc83 VCC = 3.3V 16 OUTPUT IP3 vs. RF FREQUENCY 17 MAX2065 toc85 OUTPUT P1dB vs. RF FREQUENCY 17 2nd HARMONIC (dBc) MAX2065 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA 50 250 450 650 RF FREQUENCY (MHz) 850 1050 0 4 8 12 16 20 24 DIGITAL ATTENUATOR STATE (dB) ______________________________________________________________________________________ 28 32 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA 3rd HARMONIC vs. RF FREQUENCY TC = +85C 40 80 70 64 96 128 160 192 224 256 50 250 450 650 850 3rd HARMONIC vs. DIGITAL ATTENUATOR STATE 3rd HARMONIC vs. ANALOG ATTENUATOR STATE MAX2065 toc95 75 60 80 16 20 24 28 TC = -40C 32 64 96 128 160 192 224 256 50 250 DAC CODE 70 MAX2065 toc98 POUT = 0dBm/TONE POUT = 0dBm/TONE RF = 200MHz TC = +85C VCC = 3.3V 60 450 650 850 1050 RF FREQUENCY (MHz) OIP2 vs. DIGITAL ATTENUATOR STATE OIP2 vs. RF FREQUENCY 70 OIP2 vs. ANALOG ATTENUATOR STATE 70 POUT = -3dBm/TONE RF = 200MHz VCC = 3.3V TC = +85C 60 50 40 OIP2 (dBm) VCC = 3.6V OIP2 (dBm) VCC = 3.3V 50 30 0 32 DIGITAL ATTENUATOR STATE (dB) 60 TC = +85C TC = +85C MAX2065 toc99 12 TC = +25C TC = -40C 50 8 1050 70 60 70 4 850 40 TC = -40C 0 650 POUT = 0dBm/TONE VCC = 3.3V OIP2 (dBm) 80 450 70 TC = +25C 90 250 OIP2 vs. RF FREQUENCY POUT = 0dBm RF = 200MHz VCC = 3.3V 100 50 RF FREQUENCY (MHz) 110 3rd HARMONIC (dBc) TC = +25C, +85C 85 70 1050 RF FREQUENCY (MHz) POUT = 0dBm RF = 200MHz VCC = 3.3V 80 VCC = 3.0V DAC CODE 90 VCC = 3.6V 50 MAX2065 toc96 32 VCC = 3.3V 90 60 TC = -40C 50 0 OIP2 (dBm) MAX2065 toc93 TC = +85C 60 30 3rd HARMONIC (dBc) 90 MAX2065 toc100 TC = -40C TC = +25C POUT = 3dBm 100 MAX2065 toc97 50 110 3rd HARMONIC (dBc) 60 POUT = 3dBm VCC = 3.3V 100 3rd HARMONIC (dBc) 70 2nd HARMONIC (dBc) POUT = 0dBm RF = 200MHz VCC = 3.3V TC = +25C 3rd HARMONIC vs. RF FREQUENCY 110 MAX2065 toc92 80 MAX2065 toc94 2nd HARMONIC vs. ANALOG ATTENUATOR STATE 50 TC = +25C TC = +25C 40 50 40 TC = -40C TC = -40C VCC = 3.0V 30 30 50 250 450 650 RF FREQUENCY (MHz) 850 1050 30 0 4 8 12 16 20 24 DIGITAL ATTENUATOR STATE (dB) 28 32 0 32 64 96 128 160 192 224 256 DAC CODE ______________________________________________________________________________________ 17 MAX2065 Typical Operating Characteristics (continued) (VCC = +3.3V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25C, internal DAC reference used, unless otherwise noted.) MAX2065 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA Pin Description PIN NAME 1, 16, 19, 22, 24-28, 30, 31, 33-36 GND 2 VREF_SELECT 3 VDAC_EN 4 DATA 5 CLK SPI Clock Digital Input 6 CS SPI Chip-Select Digital Input 7 VDD_LOGIC 8 SER/PAR Digital Attenuator SPI or Parallel Control Selection Logic Input. Logic 0 = parallel control, Logic 1 = serial control. 9 STATE_A Digital Attenuator Preprogrammed Attenuation State Logic Input 10 Ground DAC Reference Voltage Selection Logic Input. Logic 1 = internal DAC reference voltage, Logic 0 = external DAC reference voltage. Logic input disabled (don't care) when VDAC_EN = Logic 0. DAC Enable/Disable Logic Input. Logic 0 = disable DAC circuit, Logic 1 = enable DAC circuit. SPI Data Digital Input Digital Logic Supply Input State A State B Digital Attenuator Logic = 0 Logic = 0 Preprogrammed State 1 Logic = 1 Logic = 0 Preprogrammed State 2 Logic = 0 Logic = 1 Preprogrammed State 3 Logic = 1 Logic = 1 Preprogrammed State 4 11 D4 16dB Attenuator Logic Input. Logic 0 = disable, Logic 1 = enable. 12 D3 8dB Attenuator Logic Input. Logic 0 = disable, Logic 1 = enable. 13 D2 4dB Attenuator Logic Input. Logic 0 = disable, Logic 1 = enable. 14 D1 2dB Attenuator Logic Input. Logic 0 = disable, Logic 1 = enable. 15 D0 1dB Attenuator Logic Input. Logic 0 = disable, Logic 1 = enable. 17 AMP_OUT 18 RSET Driver Amplifier Output (50) Driver Amplifier Bias-Setting. See the External Bias section. 20 AMP_IN 21 VCC_AMP Driver Amplifier Supply Voltage Input 23 ATTEN2_OUT 5-Bit Digital Attenuator Output (50) 29 ATTEN2_IN 32 ATTEN1_OUT 37 ATTEN1_IN 38 39 18 STATE_B DESCRIPTION VCC_ANALOG Driver Amplifier Input (50) 5-Bit Digital Attenuator Input (50) Analog Attenuator Output (50) Analog Attenuator Input (50) Analog Bias and Control Supply Voltage Input ANALOG_VCTRL Analog Attenuator Voltage Control Input 40 VREF_IN -- EP External DAC Voltage Reference Input Exposed Pad. Internally connected to GND. Connect EP to GND for proper RF performance and enhanced thermal dissipation. ______________________________________________________________________________________ 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA The MAX2065 high-linearity analog/digital variable-gain amplifier is a general-purpose, high-performance amplifier designed to interface with 50 systems operating in the 50MHz to 1000MHz frequency range. The MAX2065 integrates one digital attenuator and one analog attenuator to provide 62dB of total gain control, as well as a driver amplifier optimized to provide high gain, high IP3, low noise figure, and low power consumption. For applications that do not require high linearity, the bias current of the amplifier can be adjusted by an external resistor to further reduce power consumption. The digital attenuator is controlled as a slave peripheral using either the SPI-compatible interface or a parallel bus with 31dB total adjustment range in 1dB steps. An added feature allows "rapid-fire" gain selection between each of the four unique steps (preprogrammed by the user through the SPI-compatible interface). The 2-pin control allows the user to quickly access any one of four customized attenuation states without reprogramming the SPI bus. The analog attenuator is controlled using an external voltage or through the SPI-compatible interface using an on-chip DAC. Because each of the three stages has its own external RF input and RF output, this component can be configured to either optimize NF (amplifier configured first), OIP3 (amplifier last), or a compromise of NF and OIP3. The device's performance features include 22dB standalone amplifier gain (amplifier only), 6.5dB NF at maximum gain (includes attenuator insertion loss for both attenuators), and a high OIP3 level of +42dBm. Each of these features makes the MAX2065 an ideal VGA for numerous receiver and transmitter applications. In addition, the MAX2065 operates from a single +5V supply, or a single +3.3V supply with slightly reduced performance, and has adjustable bias to trade current consumption for linearity performance. Analog and 5-Bit Digital Attenuator Control The MAX2065 integrates one analog attenuator and one 5-bit digital attenuator to achieve a high level of dynamic range. The analog attenuator has a 31dB range and is controlled using an external voltage or through the 3-wire serial peripheral interface (SPI) using an on-chip 8-bit DAC. The digital attenuator has a 31dB control range, a 1dB step size, and is programmed through the 3-wire SPI. See the Applications Information section and Table 1 for attenuator programming details. The attenuators can be used for both static and dynamic power control. Driver Amplifier The MAX2065 includes a high-performance driver with a fixed gain of 22dB. The driver amplifier circuit is optimized for high linearity for the 50MHz to 1000MHz frequency range. Applications Information SPI Interface and Attenuator Settings The digital attenuator is programmed through the 3-wire SPI/MICROWIRETM-compatible serial interface using 5-bit words. Twenty-eight bits of data are shifted in MSB first and is framed by CS. When CS is low, the clock is active and data is shifted on the rising edge of the clock. When CS transitions high, the data is latched and the attenuator setting changes (Figure 1). See Table 2 for details on the SPI data format. Table 1. Control Logic ANALOG ATTENUATOR DIGITAL ATTENUATOR D/A CONVERTER VDAC_EN SER/PAR VREF_SELECT 0 0 X Controlled by external control voltage Parallel controlled Disabled 1 0 1 Controlled by on-chip DAC Parallel controlled Enabled (DAC uses onchip voltage reference) 0 1 X Controlled by external control voltage SPI controlled Disabled 1 1 0 Controlled by on-chip DAC SPI controlled Enabled (DAC uses external voltage reference) X = Don't care. MICROWIRE is a trademark of National Semiconductor Corp. ______________________________________________________________________________________ 19 MAX2065 Detailed Description MAX2065 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA MSB LSB DN DATA D(N-1) D1 D0 CLOCK tCW tCS tCH CS tES tEWS tEW Figure 1. MAX2065 SPI Timing Diagram Table 2. SPI Data Format FUNCTION BIT D27 (MSB) Digital Attenuator State 4 DESCRIPTION 16dB step (MSB of the 5-bit word used to program the digital attenuator state 4) D26 8dB step D25 4dB step D24 2dB step D23 1dB step (LSB) D22 D21 Digital Attenuator State 3 D20 5-bit word used to program the digital attenuator state 3 (see the description for digital attenuator state 4) D19 D18 D17 D16 Digital Attenuator State 2 D15 5-bit word used to program the digital attenuator state 2 (see the description for digital attenuator state 4) D14 D13 D12 D11 Digital Attenuator State 1 D10 5-bit word used to program the digital attenuator state 1 (see the description for digital attenuator state 4) D9 D8 20 ______________________________________________________________________________________ 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA MAX2065 Table 2. SPI Data Format (continued) FUNCTION On-Chip DAC BIT DESCRIPTION D7 Bit 7 (MSB) of on-chip DAC used to program the analog attenuator D6 Bit 6 of DAC D5 Bit 5 of DAC D4 Bit 4 of DAC D3 Bit 3 of DAC D2 Bit 2 of DAC D1 Bit 1 of DAC D0 (LSB) Bit 0 (LSB) of the on-chip DAC Attenuator and DAC Operation The analog attenuator is controlled by an external control voltage applied at ANALOG_VCTRL (pin 39) or by the on-chip 8-bit DAC, while the digital attenuator is controlled through the SPI-compatible interface or parallel bus. The DAC enable/disable logic-input pin (VDAC_EN), digital attenuator SPI or parallel control selection logic-input pin (SER/PAR), and the DAC reference voltage selection logic-input pin (VREF_SELECT) determine how the attenuators are controlled. The onchip DAC can also be enabled or disabled. When the DAC is enabled, either the on-chip voltage reference or the external voltage reference can be selected. See Table 1 for the attenuator and DAC operation truth table. Digital Attenuator Settings Using the Parallel Control Bus To capitalize on its fast 25ns switching capability, the MAX2065 offers a supplemental 5-bit parallel control interface. The digital logic attenuator-control pins (D0-D4) enable the attenuator stages (Table 3). Direct access to this 5-bit bus enables the user to avoid any programming delays associated with the SPI interface. One of the limitations of any SPI bus is the speed at which commands can be clocked into each peripheral device. By offering direct access to the 5-bit parallel interface, the user can quickly shift between digital attenuator states needed for critical "fast-attack" automatic gain control (AGC) applications. "Rapid-Fire" Preprogrammed Attenuation States The MAX2065 has an added feature that provides "rapid fire" gain selection between four preprogrammed attenuation steps. As with the supplemental 5-bit bus mentioned above, this "rapid fire" gain selection allows the user to quickly access any one of four customized digital attenuation states without incurring the delays associated with reprogramming the device through the SPI bus. The switching speed is comparable to that achieved using the supplemental 5-bit parallel bus. However, by employing this specific feature, the digital attenuator I/O is further reduced by a factor of either 5 or 2.5 (5 control bits vs. 1 or 2, respectively) depending on the number of states desired. Table 3. Digital Attenuator Settings (Parallel Control) INPUT LOGIC = 0 (OR GROUND) LOGIC = 1 D0 Disable 1dB attenuator, or when SPI is default programmer Enable 1dB attenuator D1 Disable 2dB attenuator, or when SPI is default programmer Enable 2dB attenuator D2 Disable 4dB attenuator, or when SPI is default programmer Enable 4dB attenuator D3 Disable 8dB attenuator, or when SPI is default programmer Enable 8dB attenuator D4 Disable 16dB attenuator, or when SPI is default programmer Enable 16dB attenuator ______________________________________________________________________________________ 21 MAX2065 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA The user can employ the STATE_A and STATE_B logicinput pins to apply each step as required (Table 4). Toggling just the STATE_A pin (one control bit) yields two preprogrammed attenuation states; toggling both the STATE_A and STATE_B pins together (two control bits) yield four preprogrammed attenuation states. As an example, assume that the AGC application requires a static attenuation adjustment to trim out gain inconsistencies within a receiver lineup. The same AGC circuit can also be called upon to dynamically attenuate an unwanted blocker signal that could de-sense the receiver and lead to an ADC overdrive condition. In this example, the MAX2065 would be preprogrammed (through the SPI bus) with two customized attenuation states--one to address the static gain trim adjustment, the second to counter the unwanted blocker condition. Table 4. Preprogrammed Attenuation State Settings STATE_A STATE_B DIGITAL ATTENUATOR 0 0 Preprogrammed attenuation state 1 1 0 Preprogrammed attenuation state 2 0 1 Preprogrammed attenuation state 3 1 1 Preprogrammed attenuation state 4 Toggling just the STATE_A control bit enables the user to switch quickly between the static and dynamic attenuation settings with only one I/O pin. If desired, the user can also program two additional attenuation states by using the STATE_B control bit as a second I/O pin. These two additional attenuation settings are useful for software-defined radio applications where multiple static gain settings may be needed to account for different frequencies of operation, or where multiple dynamic attenuation settings are needed to account for different blocker levels (as defined by multiple wireless standards). Cascaded OIP3 Considerations Due to both attenuator's finite IP3 performance, the cascaded OIP3 degrades when both attenuators are set at higher attenuation states. External Bias Bias currents for the driver amplifier are set and optimized through external resistors. Resistors R1 and R1A connected to RSET (pin 18) set the bias current for the amplifier. The external biasing resistor values can be increased for reduced current operation at the expense of performance. Table 5. Typical Application Circuit Component Values (HC Mode) DESIGNATION VALUE SIZE VENDOR DESCRIPTION C1, C2, C7, C11 10nF 0402 Murata Mfg. Co., Ltd. X7R C3, C4, C6, C8, C9, C10 1000pF 0402 Murata Mfg. Co., Ltd. C0G ceramic capacitor C12, C13 150pF 0402 Murata Mfg. Co., Ltd. C0G ceramic capacitor L1 470nH 1008 Coilcraft, Inc. 1008CS-471XJLC R1, R1A 10 0402 Panasonic Corp. 1% R2 (+3.3V applications only) 1k 0402 Panasonic Corp. 1% R3 (+3.3V applications only) 2k 0402 Panasonic Corp. 1% R4 (+5V applications and using internal DAC only) 47k 0402 Panasonic Corp. 1% U1 -- 40-pin thin QFN-EP (6mm x 6mm) Maxim Integrated Products, Inc. MAX2065ETL+ 22 ______________________________________________________________________________________ 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA DESIGNATION VALUE SIZE VENDOR DESCRIPTION C1, C2, C7, C11 10nF 0402 Murata Mfg. Co., Ltd. X7R C3, C4, C6, C8, C9, C10 1000pF 0402 Murata Mfg. Co., Ltd. C0G ceramic capacitor C12, C13 150pF 0402 Murata Mfg. Co., Ltd. C0G ceramic capacitor L1 470nH 1008 Coilcraft, Inc. 1008CS-471XJLC R1 24 0402 Vishay 1% R1A 0.01F 0402 Murata Mfg. Co., Ltd. X7R R2 (+3.3V applications only) 1k 0402 Panasonic Corp. 1% R3 (+3.3V applications only) 2k 0402 Panasonic Corp. 1% R4 (+5V applications and using internal DAC only) 47k 0402 Panasonic Corp. 1% U1 -- 40-pin thin QFN-EP (6mm x 6mm) Maxim Integrated Products, Inc. MAX2065ETL+ +5V and +3.3V Supply Voltage The MAX2065 features an optional +3.3V supply voltage operation with slightly reduced linearity performance. Layout Considerations The pin configuration of the MAX2065 has been optimized to facilitate a very compact physical layout of the device and its associated discrete components. The exposed paddle (EP) of the MAX2065's 40-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX2065 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP must be soldered to a ground plane on the PCB, either directly or through an array of plated via holes. 26 25 GND GND L 24 23 22 C GND ATTEN2_OUT C8 GND VCC 21 VCC_AMP Amplitude Overshoot Reduction To reduce amplitude overshoot during digital attenuator state change, connect a bandpass filter (parallel LC type) from ATTEN2_OUT (pin 23) to ground. L = 18nH and C = 47pF are recommended for 169MHz operation (Figure 2). Contact the factory for recommended components for other operating frequencies. C6 C7 Figure 2. Bandpass Filter to Reduce Amplitude Overshoot ______________________________________________________________________________________ 23 MAX2065 Table 6. Typical Application Circuit Component Values (LC Mode) 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA MAX2065 Typical Application Circuit VCC C11 C12 R4 RF INPUT + STATE_B GND ATTEN1_OUT GND GND GND GND 28 DIGITAL ATTENUATOR VREF 4 5 DAC 6 7 8 27 26 25 24 23 DRIVER AMP EP 9 22 10 21 D4 11 12 13 14 15 16 17 18 19 GND ATTEN2_IN C9 GND GND GND GND GND ATTEN2_OUT C8 GND VCC VCC_AMP 20 AMP_IN STATE_A 31 30 GND SER/PAR 32 RSET C1 33 3 AMP_OUT VDD_LOGIC 34 GND CS VDD 35 29 D0 CLK 36 2 D1 DATA 37 ANALOG ATTENUATOR D2 VDAC_EN 38 39 D3 VREF_SELECT 40 1 SPI INTERFACE GND ATTEN1_IN VREF_IN C13 VCC_ANALOG VREF_IN ANALOG_VCTRL C10 C6 R2 R1 R3 VCC L1 C2 C3 R1A C4 RF OUTPUT 24 ______________________________________________________________________________________ C7 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA VREF_IN ANALOG_VCTRL VCC_ANALOG ATTEN1_IN GND GND GND GND ATTEN1_OUT GND 40 39 38 37 36 35 34 33 32 31 TOP VIEW + GND 1 30 GND ANALOG ATTENUATOR VREF_SELECT 2 29 ATTEN2_IN VDAC_EN 3 28 GND DATA 4 DIGITAL ATTENUATOR VREF CLK 5 DAC SPI INTERFACE CS 6 VDD_LOGIC 7 SER/PAR 8 27 GND 26 GND 25 GND 24 GND 23 ATTEN2_OUT DRIVER AMP STATE_A 9 22 GND 15 16 17 18 19 20 AMP_OUT RSET GND AMP_IN D2 14 GND 13 D0 12 D1 11 D3 21 VCC_AMP D4 STATE_B 10 TQFN EXPOSED PADDLE ON BOTTOM. CONNECT EP TO GND. Chip Information PROCESS: SiGe BiCMOS ______________________________________________________________________________________ 25 MAX2065 Pin Configuration/Functional Block Diagram Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.) QFN THIN.EPS MAX2065 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA 26 ______________________________________________________________________________________ 50MHz to 1000MHz High-Linearity, Serial/ Parallel-Controlled Analog/Digital VGA Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 27 (c) 2008 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc. MAX2065 Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)