General Description
The MAX2065 high-linearity, analog/digital variable-
gain amplifier (VGA) is designed to operate in the
50MHz to 1000MHz frequency range with two indepen-
dent attenuators (see the
Typical Application Circuit
).
The digital attenuator is controlled as a slave peripheral
using either the SPI™-compatible interface or a parallel
bus with 31dB total adjustment range in 1dB steps. An
added feature allows “rapid-fire” gain selection
between each of four steps, preprogrammed by the
user through the SPI-compatible interface. The 2-pin
control allows the user to quickly access any one of
four customized attenuation states without reprogram-
ming the SPI bus. The analog attenuator is controlled
using an external voltage or through the SPI-compatible
interface using an on-chip 8-bit DAC.
Because each of the three stages has its own RF input
and RF output, this component can be configured to
either optimize NF (amplifier configured first), OIP3 (ampli-
fier last), or a compromise of NF and OIP3. The device’s
performance features include 22dB amplifier gain (ampli-
fier only), 6.5dB NF at maximum gain (includes attenuator
insertion losses), and a high OIP3 level of +42dBm. Each
of these features makes the MAX2065 an ideal VGA for
numerous receiver and transmitter applications.
In addition, the MAX2065 operates from a single +5V
supply with full performance, or a single +3.3V supply
with slightly reduced performance, and has an
adjustable bias to trade current consumption for linearity
performance. This device is available in a compact 40-
pin thin QFN package (6mm x 6mm) with an exposed
pad. Electrical performance is guaranteed over the
extended temperature range (TC= -40°C to +85°C).
Applications
IF and RF Gain Stages
Temperature Compensation Circuits
Cellular Band WCDMA and cdma2000®Base
Stations
GSM 850/GSM 900 EDGE Base Stations
WiMAX and LTE Base Stations and Customer
Premise Equipment
Fixed Broadband Wireless Access
Wireless Local Loop
Military Systems
Video-on-Demand (VOD) and DOCSIS®-
Compliant EDGE QAM Modulation
Cable Modem Termination Systems (CMTS)
Features
50MHz to 1000MHz RF Frequency Range
Pin-Compatible Family Includes:
MAX2066 (Digital VGA)
MAX2067 (Analog VGA)
+19.4dB (Typ) Maximum Gain
0.5dB Gain Flatness Over 100MHz Bandwidth
62dB Gain Range (31dB Analog + 31dB Digital)
Built-in DAC for Analog Attenuation Control
Supports Four “Rapid-Fire” Preprogrammed
Attenuator States
Quickly Access Any One of Four Customized
Attenuation States Without Reprogramming
the SPI Bus
Ideal for Fast-Attack, High-Level Blocker Protection
Prevents ADC Overdrive Condition
Excellent Linearity (Configured with Amplifier
Last)
+42dBm OIP3
+63dBm OIP2
+19dBm Output 1dB Compression Point
-67dBc HD2
-83dBc HD3
6.5dB Typical Noise Figure (NF)
Fast, 25ns Digital Switching
Very Low Digital VGA Amplitude Overshoot/
Undershoot
Single +5V Supply (Optional +3.3V Operation)
External Current-Setting Resistors Provide Option
for Operating Device in Reduced-Power/
Reduced-Performance Mode
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
________________________________________________________________
Maxim Integrated Products
1
Ordering Information
19-3131; Rev 0; 3/08
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
+
Denotes a lead-free package.
*
EP = Exposed pad.
T = Tape and reel.
cdma2000 is a registered trademark of Telecommunications
Industry Association.
DOCSIS and CableLabs are registered trademarks of Cable
Television Laboratories, Inc. (CableLabs®).
PART TEMP RANGE PIN-
PACKAGE
PKG
CODE
MAX2065ETL+ -40°C to +85°C 40 Thin QFN-EP* T4066-3
M AX 2065E TL+ T -40°C to +85°C 40 Thin QFN-EP* T4066-3
SPI is a trademark of Motorola, Inc.
Pin Configuration appears at end of data sheet.
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
2 _______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, high-current (HC) mode, VCC = +3.0V to +3.6V, TC= -40°C to +85°C. Typical values are at VCC = +3.3V
and TC= +25°C, unless otherwise noted.)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
Note 1: Based on junction temperature TJ= TC+ (θJC x VCC x ICC). This formula can be used when the temperature of the exposed
pad is known while the device is soldered down to a printed-circuit board (PCB). See the
Applications Information
section
for details. The junction temperature must not exceed +150°C.
Note 2: Junction temperature TJ= TA+ (θJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150°C.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a 4-layer
board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: TCis the temperature on the exposed pad of the package. TAis the ambient temperature of the device and PCB.
VCC_ to GND ........................................................-0.3V to +5.5V
VDD_LOGIC, DATA, CS, CLK, SER/PAR, VDAC_EN,
VREF_SELECT.....................................-0.3V to (VCC_ + 0.3V)
STATE_A, STATE_B, D0–D4 ....................-0.3V to (VCC_ + 0.3V)
AMP_IN, AMP_OUT, VREF_IN,
ANALOG_VCTRL ................................-0.3V to (VCC_ + 0.3V)
ATTEN1_IN, ATTEN1_OUT, ATTEN2_IN,
ATTEN2_OUT...................................................-1.2V to + 1.2V
RSET to GND........................................................-0.3V to + 1.2V
RF Input Power (ATTEN1_IN, ATTEN1_OUT,
ATTEN2_IN, ATTEN2_OUT).......................................+20dBm
RF Input Power (AMP_IN)...............................................+18dBm
Continuous Power Dissipation (Note 1) ...............................6.5W
θJA (Notes 2, 3)..............................................................+38°C/W
θJC (Note 3) ...................................................................+10°C/W
Operating Temperature Range (Note 4).....TC= -40°C to +85°C
Maximum Junction Temperature .....................................+150°C
Storage Temperature.........................................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage VCC 3.0 3.3 3.6 V
Supply Current ICC 60 80 mA
LOGIC INPUTS (DATA, CS, CLK, VDAC_EN, VREF_SELECT, SER/PAR, STATE_A, STATE_B, D0D4)
Input High Voltage VIH 2V
Input Low Voltage VIL 0.8 V
+5V SUPPLY DC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, VCC = +4.75V to +5.25V, TC= -40°C to +85°C. Typical values are at VCC = +5V and
TC= +25°C, unless otherwise noted.)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Supply Voltage VCC 4.75 5 5.25 V
Low-current (LC) mode 73 93
Supply Current ICC High-current (HC) mode 124 146 mA
LOGIC INPUTS (DATA, CS, CLK, VDAC_EN, VREF_SELECT, SER/PAR, STATE_A, STATE_B, D0D4)
Input High Voltage VIH 3V
Input Low Voltage VIL 0.8 V
Input Current Logic-High IIH -1 +1 µA
Input Current Logic-Low IIL -1 +1 µA
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
_______________________________________________________________________________________ 3
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, VCC = +4.75 to +5.25V, HC mode with each attenuator set for maximum gain, 50MHz fRF 1000MHz,
TC= -40°C to +85°C. Typical values are at VCC = +5.0V, HC mode, PIN = -20dBm, fRF = 200MHz, and TC= +25oC, unless otherwise
noted.) (Note 5)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Frequency Range fRF (Notes 6, 7) 50 1000 MHz
200MHz 19.4
350MHz, TC = +25°C 17.5 18.7 19.7
450MHz 18.2
750MHz 16.4
Small Signal Gain G
900MHz 15.6
dB
Gain Variation vs. Temperature -0.006 dB/°C
Gain Flatness vs. Frequency Any 100MHz frequency band from 50MHz
to 500MHz 0.5 dB
200MHz 6.5
350MHz, TC = +25°C (Note 7) 6.8 8
450MHz 7
750MHz 7.8
Noise Figure NF
900MHz 8.2
dB
Total Attenuation Range Analog and digital combined 61.5 dB
Output Second-Order Intercept
Point OIP2 POUT = 0dBm/tone, Δf = 1MHz, f1 + f263 dBm
200MHz 42
350MHz 40
450MHz 39
750MHz 36
POUT = 0dBm/tone,
H C m od e, Δ f = 1M H z
900MHz 35
200MHz 40
350MHz 38
450MHz 37
750MHz 35
Output Third-Order Intercept
Point OIP3
POUT = 0dBm/tone,
LC mode, Δf = 1MHz
900MHz 33
dBm
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS
(
Typical Application Circuit
, VCC = +3.0V to +3.6V, TC= -40°C to +85°C. Typical values are at VCC = +3.3V, HC mode with attenua-
tors set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25oC, unless otherwise noted.) (Note 5)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
RF Frequency Range fRF (Notes 6, 7) 50 1000 MHz
Small Signal Gain G 18.8 dB
Output Third-Order Intercept
Point OIP3 POUT = 0dBm/tone, maximum gain setting 37.5 dBm
Noise Figure NF Maximum gain setting 6.7 dB
Total Attenuation Range Analog and digital combined 61.5 dB
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
4 _______________________________________________________________________________________
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)
(
Typical Application Circuit
, VCC = +4.75 to +5.25V, HC mode with each attenuator set for maximum gain, 50MHz fRF 1000MHz,
TC= -40°C to +85°C. Typical values are at VCC = +5.0V, HC mode, PIN = -20dBm, fRF = 200MHz, and TC= +25oC, unless otherwise
noted.) (Note 5)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Output -1dB Compression Point P1dB 350MHz, TC = +25°C (Note 8) 17 18.7 dBm
Second Harmonic POUT = +3dBm, fRF = 200MHz, TC = +25°C
(Note 7) -60 -67 dBc
Third Harmonic POUT = +3dBm, fRF = 200MHz, TC = +25°C
(Note 7) -71 -83 dBc
Input Return Loss 50Ω source, maximum gain setting 18 dB
Output Return Loss 50Ω load, maximum gain setting 18 dB
DIGITAL ATTENUATOR
Insertion Loss 2.5 dB
Input Second-Order Intercept
Point IIP2 PRF1 = 0dBm, PRF2 = 0dBm, Δf = 1MHz,
f1 + f252 dBm
Input Third-Order Intercept Point IIP3 PRF1 = 0dBm, PRF2 = 0dBm, Δf = 1MHz 41 dBm
Attenuation Range 31.2 dB
Step Size 1dB
Relative Step Accuracy 0.2 dB
Absolute Step Accuracy 0.45 dB
0dB to 16dB 4.8
24dB 8Insertion Phase Step fRF = 170MHz
31dB 10.8
D eg r ees
ET = 15ns 1.0
Amplitude Overshoot/Undershoot Between any two
states ET = 40ns 0.05 dB
31dB to 0dB 25
Switching Speed RF settled to within
±0.1dB 0dB to 31dB 21 ns
Input Return Loss 50Ω source 19 dB
Output Return Loss 50Ω load 19 dB
ANALOG ATTENUATOR
Insertion Loss 1.2 dB
Input Second-Order Intercept
Point IIP2 PRF1 = 0dBm, PRF2 = 0dBm, maximum gain
setting, Δf = 1MHz, f1 + f270 dBm
Input Third-Order Intercept Point IIP3 PRF1 = 0dBm, PRF2 = 0dBm, maximum gain
setting, Δf = 1MHz 36 dBm
Attenuation Range Analog control input 31.1 dB
Gain Control Slope Analog control input -12.5 dB/V
Maximum Gain Control Slope Over analog control input range -35 dB/V
Insertion Phase Change Over analog control input range 18 D eg r ees
Group Delay Maximum gain setting 0.98 ns
Group Delay vs. Control Voltage Over analog control input range -0.25 ns
Analog Control Input Range 0.25 2.75 V
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
_______________________________________________________________________________________ 5
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)
(
Typical Application Circuit
, VCC = +4.75 to +5.25V, HC mode with each attenuator set for maximum gain, 50MHz fRF 1000MHz,
TC= -40°C to +85°C. Typical values are at VCC = +5.0V, HC mode, PIN = -20dBm, fRF = 200MHz, and TC= +25oC, unless otherwise
noted.) (Note 5)
PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Analog Control Input Impedance 80 kΩ
Input Return Loss 50Ω source 22 dB
Output Return Loss 50Ω load 22 dB
D/A CONVERTER
Number of Bits 8 Bits
DAC code = 00000000 0.25
Output Voltage DAC code = 11111111 2.75 V
SERIAL PERIPHERAL INTERFACE (SPI)
Maximum Clock Speed fCLK 20 MHz
Data-to-Clock Setup Time tCS 2ns
Data-to-Clock Hold Time tCH 2.5 ns
Clock-to-CS Setup Time tES 3ns
CS Positive Pulse Width tEW 7ns
CS Setup Time tEWS 3.5 ns
Clock Pulse Width tCW 5ns
Note 5: All limits include external component losses. Output measurements are performed at RF output port of the
Typical
Application Circuit
.
Note 6: Operating outside this range is possible, but with degraded performance of some parameters.
Note 7: Guaranteed by design and characterization.
Note 8: It is advisable not to operate continuously the VGA RF input above +15dBm.
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
6 _______________________________________________________________________________________
GAIN OVER DIGITAL ATTENUATOR
SETTING vs. RF FREQUENCY
MAX2065 toc04
RF FREQUENCY (MHz)
GAIN (dB)
850450 650250
-8
2
12
22
-18
50 1050
DIGITAL ATTENUATOR RELATIVE
ERROR vs. RF FREQUENCY
MAX2065 toc05
RF FREQUENCY (MHz)
RELATIVE ERROR (dB)
850450 650250
-0.50
0
0.50
1.00
-0.75
-0.25
0.25
0.75
-1.00
50 1050
DIGITAL ATTENUATOR ABSOLUTE
ERROR vs. RF FREQUENCY
MAX2065 toc06
RF FREQUENCY (MHz)
ABSOLUTE ERROR (dB)
850450 650250
-0.50
0
0.50
1.00
-0.75
-0.25
0.25
0.75
-2.00
-1.25
-1.50
-1.70
-1.00
50 1050
INPUT MATCH OVER DIGITAL ATTENUATOR
SETTING vs. RF FREQUENCY
MAX2065 toc07
RF FREQUENCY (MHz)
INPUT MATCH (dB)
800400 600200
-15
-10
-5
0
-30
-25
-20
0 1000
16dB
0dB, 8dB
4dB 31dB
1dB, 2dB
OUTPUT MATCH OVER DIGITAL ATTENUATOR
SETTING vs. RF FREQUENCY
MAX2065 toc08
RF FREQUENCY (MHz)
OUTPUT MATCH (dB)
800400 600200
-15
-10
-5
0
-30
-25
-20
0 1000
0dB, 1dB, 2dB, 4dB
16dB, 31dB
8dB
REVERSE ISOLATION OVER DIGITAL
ATTENUATOR SETTING vs. RF FREQUENCY
MAX2065 toc09
RF FREQUENCY (MHz)
REVERSE ISOLATION (dB)
850450 650250
-50
-40
-30
-70
-60
50 1050
DIGITAL ATTENUATOR 0dB
DIGITAL ATTENUATOR 31dB
SUPPLY CURRENT vs. VCC
MAX2065 toc01
VCC (V)
SUPPLY CURRENT (mA)
5.1255.0004.875
110
120
130
140
150
100
4.750 5.250
TC = +85°C
TC = +25°C
TC = -40°C
GAIN vs. RF FREQUENCY
MAX2065 toc02
RF FREQUENCY (MHz)
GAIN (dB)
850450 650250
15
16
17
19
18
20
21
22
14
50 1050
TC = +25°C
TC = -40°C
TC = +85°C
GAIN vs. RF FREQUENCY
MAX2065 toc03
RF FREQUENCY (MHz)
GAIN (dB)
850450 650250
15
16
17
19
18
20
21
22
14
50 1050
VCC = 5.25V
VCC = 5.00V
VCC = 4.75V
Typical Operating Characteristics
(VCC = +5.0V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, internal DAC refer-
ence used, unless otherwise noted.)
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
_______________________________________________________________________________________ 7
GAIN vs. ANALOG ATTENUATOR SETTING
MAX2065 toc13
DAC CODE
GAIN (dB)
12864 96 224160 19232
12
17
22
-18
7
2
-3
-8
-13
0 256
TC = -40°C, +25°C, +85°C
RF = 200MHz
GAIN vs. ANALOG ATTENUATOR SETTING
MAX2065 toc14
DAC CODE
GAIN (dB)
12864 96 224160 19232
12
17
22
-18
7
2
-3
-8
-13
0 256
VCC = 4.75V, 5.00V, 5.25V
RF = 200MHz
INPUT MATCH
vs. ANALOG ATTENUATOR SETTING
MAX2065 toc15
DAC CODE
INPUT MATCH (dB)
12864 96 224160 19232
-5
0
-30
-10
-15
-20
-25
0 256
50MHz
1000MHz
200MHz
450MHz
OUTPUT MATCH
vs. ANALOG ATTENUATOR SETTING
MAX2065 toc16
DAC CODE
OUTPUT MATCH (dB)
12864 96 224160 19232
-5
0
-30
-10
-15
-20
-25
0 256
50MHz
1000MHz
200MHz
450MHz
REVERSE ISOLATION OVER ANALOG
ATTENUATOR SETTING vs. RF FREQUENCY
MAX2065 toc17
RF FREQUENCY (MHz)
REVERSE ISOLATION (dB)
250 450 650 850
-30
-70
-40
-50
-60
50 1050
DAC CODE 0
DAC CODE 255
S21 PHASE CHANGE
vs. ANALOG ATTENUATOR SETTING
MAX2065 toc18
DAC CODE
S21 PHASE CHANGE (DEG)
32 64 96 128 160 224192
80
-10
60
40
20
70
50
30
0
10
0 258
1000MHz 450MHz
200MHz
50MHz
POSITIVE PHASE = ELECTRICALLY SHORTER
REFERENCED TO HIGH GAIN STATE
S21 PHASE CHANGE OVER DIGITAL
ATTENUATOR SETTING vs. RF FREQUENCY
MAX2065 toc10
RF FREQUENCY (MHz)
S21 PHASE CHANGE (DEG)
850450 650250
40
50
60
-10
30
20
10
0
50 1050
POSITIVE PHASE = ELECTRICALLY SHORTER
REFERENCED TO HIGH GAIN STATE
GAIN OVER ANALOG ATTENUATOR
SETTING vs. RF FREQUENCY
MAX2065 toc11
RF FREQUENCY (MHz)
GAIN (dB)
850450 650250
12
17
22
-18
7
2
-3
-8
-13
50 1050
DAC CODE 0
DAC CODE 32
DAC CODE 128 DAC CODE 256
DAC CODE 64
GAIN vs. ANALOG ATTENUATOR SETTING
MAX2065 toc12
DAC CODE
GAIN (dB)
12864 96 224160 19232
12
17
22
-18
7
2
-3
-8
-13
0 256
50MHz
200MHz
1000MHz
450MHz
Typical Operating Characteristics (continued)
(VCC = +5.0V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, internal DAC refer-
ence used, unless otherwise noted.)
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
8 _______________________________________________________________________________________
Typical Operating Characteristics (continued)
(VCC = +5.0V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, internal DAC refer-
ence used, unless otherwise noted.)
NOISE FIGURE vs. RF FREQUENCY
MAX2065 toc19
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
250 450 650 850
11
4
8
6
10
9
7
5
50 1050
TC = +85°C
TC = +25°C
TC = -40°C
NOISE FIGURE vs. RF FREQUENCY
MAX2065 toc20
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
250 450 650 850
11
4
8
6
10
9
7
5
50 1050
VCC = 5.25V
VCC = 4.75V
VCC = 5.00V
OUTPUT P1dB vs. RF FREQUENCY
MAX2065 toc21
RF FREQUENCY (MHz)
OUTPUT P1dB (dBm)
250 450 650 850
21
15
17
20
19
18
16
50 1050
TC = -40°C
TC = +25°C
TC = +85°C
OUTPUT P1dB vs. RF FREQUENCY
MAX2065 toc22
RF FREQUENCY (MHz)
OUTPUT P1dB (dBm)
250 450 650 850
21
15
17
20
19
18
16
50 1050
VCC = 4.75V
VCC = 5.00V
VCC = 5.25V
OUTPUT IP3 vs. RF FREQUENCY
MAX2065 toc23
RF FREQUENCY (MHz)
OUTPUT IP3 (dBm)
250 450 650 850
50
30
45
40
35
50 1050
TC = -40°C
TC = +25°C
TC = +85°C
POUT = 0dBm/TONE
OUTPUT IP3 vs. RF FREQUENCY
MAX2065 toc24
RF FREQUENCY (MHz)
OUTPUT IP3 (dBm)
250 450 650 850
50
30
45
40
35
50 1050
VCC = 4.75V
VCC = 5.25V
VCC = 5.00V
POUT = 0dBm/TONE
OUTPUT IP3
vs. DIGITAL ATTENUATOR STATE
MAX2065 toc25
DIGITAL ATTENUATOR STATE (dB)
OUTPUT IP3 (dBm)
4 8 12 16 20 24 28
42
38
41
40
39
032
TC = +25°C LSB, USB
TC = +85°C LSB, USB
TC = -40°C LSB, USB
POUT = -3dBm/TONE
RF = 200MHz
OUTPUT IP3
vs. ANALOG ATTENUATOR STATE
MAX2065 toc26
DAC CODE
OUTPUT IP3 (dBm)
32 64 96 128 160 192 224
45
25
40
35
30
0 256
TC = -40°C, +25°C, +85°C TONE = LSB, USB
POUT = -3dBm/TONE
RF = 200MHz
2nd HARMONIC vs. RF FREQUENCY
MAX2065 toc27
RF FREQUENCY (MHz)
2nd HARMONIC (dBc)
250 450 650 850
80
40
70
60
50
50 1050
POUT = 3dBm
TC = -40°C
TC = +25°C
TC = +85°C
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
_______________________________________________________________________________________ 9
2nd HARMONIC vs. RF FREQUENCY
RF FREQUENCY (MHz)
2nd HARMONIC (dBc)
250 450 650 850
80
40
70
60
50
50 1050
POUT = 3dBm
VCC = 5.25V
VCC = 4.75V
VCC = 5.00V
MAX2065 toc28
2nd HARMONIC
vs. DIGITAL ATTENUATOR STATE
DIGITAL ATTENUATOR STATE (dB)
2nd HARMONIC (dBc)
4 8 12 16 20 24 28
80
60
75
70
65
032
POUT = 0dBm
RF = 200MHz
TC = -40°C
TC = +85°CTC = +25°C
MAX2065 toc29
2nd HARMONIC
vs. ANALOG ATTENUATOR STATE
DAC CODE
2nd HARMONIC (dBc)
32 64 96 128 160 192 224
80
60
75
70
65
0 256
POUT = 0dBm
RF = 200MHz
TC = -40°C
TC = +85°C
TC = +25°C
MAX2065 toc30
3rd HARMONIC vs. RF FREQUENCY
RF FREQUENCY (MHz)
3rd HARMONIC (dBc)
250 450 650 850
110
60
100
90
80
70
50 1050
POUT = 3dBm
TC = -40°C
TC = +85°C
TC = +25°C
MAX2065 toc31
3rd HARMONIC vs. RF FREQUENCY
RF FREQUENCY (MHz)
3rd HARMONIC (dBc)
250 450 650 850
110
60
100
90
80
70
50 1050
POUT = 3dBm
VCC = 4.75V
VCC = 5.25V
VCC = 5.00V
MAX2065 toc32
3rd HARMONIC
vs. DIGITAL ATTENUATOR STATE
DIGITAL ATTENUATOR STATE (dB)
3rd HARMONIC (dBc)
4 8 12 16 20 24 28 32
100
70
95
85
80
90
75
0
POUT = 0dBm
TC = -40°C
TC = +85°C
TC = +25°C
MAX2065 toc33
RF = 200MHz
3rd HARMONIC
vs. ANALOG ATTENUATOR STATE
DAC CODE
3rd HARMONIC (dBc)
32 64 96 128 160 192 224 256
100
70
95
85
80
90
75
0
POUT = 0dBm
TC = -40°C
TC = +85°C
TC = +25°C
MAX2065 toc34
RF = 200MHz
OIP2 vs. RF FREQUENCY
RF FREQUENCY (MHz)
OIP2 (dBm)
250 450 650 850 1050
75
40
70
60
55
50
65
45
50
POUT = 0dBm/TONE
TC = -40°C
TC = +85°C
TC = +25°C
MAX2065 toc35
OIP2 vs. RF FREQUENCY
RF FREQUENCY (MHz)
OIP2 (dBm)
250 450 650 850
75
40
70
65
55
60
45
50
50 1050
VCC = 4.75V
VCC = 5.25V
VCC = 5.00V
MAX2065 toc36
POUT = 0dBm/TONE
Typical Operating Characteristics (continued)
(VCC = +5.0V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, internal DAC refer-
ence used, unless otherwise noted.)
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
10 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(VCC = +5.0V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, internal DAC refer-
ence used, unless otherwise noted.)
OIP2 vs. DIGITAL ATTENUATOR STATE
DIGITAL ATTENUATOR STATE (dB)
OIP2 (dBm)
4 8 12 2016 24 28 32
75
40
70
60
55
50
45
65
0
POUT = -3dBm/TONE
TC = -40°C
TC = +85°C
TC = +25°C
MAX2065 toc37
RF = 200MHz
OIP2 vs. ANALOG ATTENUATOR STATE
DAC CODE
OIP2 (dBm)
32 64 96 160128 192 224 256
75
40
70
60
55
50
45
65
0
POUT = -3dBm/TONE
TC = -40°C
TC = +85°C
TC = +25°C
MAX2065 toc38
RF = 200MHz
DAC VOLTAGE vs. DAC CODE
DAC CODE
DAC VOLTAGE (V)
32 64 96 160128 192 224 256
3.0
0
2.5
2.0
1.5
1.0
0.5
0
TC = -40°C, +25°C, +85°C
MAX2065 toc39
DAC VOLTAGE vs. DAC CODE
DAC CODE
DAC VOLTAGE (V)
32 64 96 160128 192 224 256
3.0
0
2.5
2.0
1.5
1.0
0.5
0
VCC = 4.75V, 5.00V, 5.25V
MAX2065 toc40
DAC VOLTAGE DRIFT vs. DAC CODE
DAC CODE
DAC VOLTAGE CHANGE (V)
32 64 96 160128 192 224 256
0.05
-0.05
0.04
0.01
0.02
0.03
0
-0.01
-0.02
-0.03
-0.04
0
TC CHANGED FROM +25°C TO +85°C
TC CHANGED FROM +25°C TO -40°C
MAX2065 toc41
DAC VOLTAGE DRIFT vs. DAC CODE
DAC CODE
DAC VOLTAGE CHANGE (V)
32 64 96 160128 192 224 256
0.0100
-0.0100
0.0075
0.0025
0.0050
0
-0.0025
-0.0050
-0.0075
0
VCC CHANGED FROM 5.00V TO 4.75V
VCC CHANGED FROM 5.00V TO 5.25V
MAX2065 toc42
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
______________________________________________________________________________________ 11
GAIN vs. RF FREQUENCY
(DIGITAL ATTENUATOR ONLY)
RF FREQUENCY (MHz)
GAIN (dB)
250 450 650 850 1050
0
-5
-2
-1
-3
-4
50
MAXIMUM GAIN SETTING
MAX2065 toc43
TC = -40°C
TC = +85°C
TC = +25°C
GAIN vs. RF FREQUENCY
(DIGITAL ATTENUATOR ONLY)
RF FREQUENCY (MHz)
GAIN (dB)
250 450 650 850 1050
0
-5
-2
-1
-3
-4
50
MAXIMUM GAIN SETTING
MAX2065 toc44
VCC = 5.25V
VCC = 4.75V
VCC = 5.00V
GAIN vs. RF FREQUENCY
(ANALOG ATTENUATOR ONLY)
RF FREQUENCY (MHz)
GAIN (dB)
250 450 650 850 1050
0
-5
-2
-1
-3
-4
50
MAXIMUM GAIN SETTING
MAX2065 toc45
TC = -40°C
TC = +85°C
TC = +25°C
GAIN vs. RF FREQUENCY
(ANALOG ATTENUATOR ONLY)
RF FREQUENCY (MHz)
GAIN (dB)
250 450 650 850 1050
0
-5
-2
-1
-3
-4
50
MAXIMUM GAIN SETTING
MAX2065 toc46
VCC = 4.75V, 5.00V, 5.25V
Typical Operating Characteristics (continued)
(VCC = +5.0V, attenuator only, maximum gain, PIN = -20dBm and TC= +25°C, unless otherwise noted.)
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
12 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(VCC = +5.0V, LC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, internal reference
used, unless otherwise noted.)
SUPPLY CURRENT vs. VCC
(LOW CURRENT MODE)
VCC (V)
SUPPLY CURRENT (mA)
4.857 5.000 5.125 5.250
85
55
75
65
4.750
MAX2065 toc47
TC = -40°C
TC = +85°C
TC = +25°C
GAIN vs. RF FREQUENCY
(LOW CURRENT MODE)
RF FREQUENCY (MHz)
GAIN (dB)
250 450 650 850 1050
22
21
14
20
19
18
17
16
15
50
MAX2065 toc48
TC = -40°C
TC = +85°C
TC = +25°C
GAIN vs. RF FREQUENCY
(LOW CURRENT MODE)
RF FREQUENCY (MHz)
GAIN (dB)
250 450 650 850 1050
22
21
14
20
19
18
17
16
15
50
MAX2065 toc49
VCC = 4.75V, 5.00V, 5.25V
INPUT MATCH OVER DIGITAL ATTENUATOR
SETTING vs. RF FREQUENCY
RF FREQUENCY (MHz)
INPUT MATCH (dB)
250 450 650 850 1050
0
-5
-30
-10
-15
-20
-25
50
MAX2065 toc50
16dB
31dB
0dB, 8dB
1dB, 2dB
4dB
OUTPUT MATCH OVER DIGITAL ATTENUATOR
SETTING vs. RF FREQUENCY
RF FREQUENCY (MHz)
OUTPUT MATCH (dB)
250 450 650 850 1050
0
-5
-30
-10
-15
-20
-25
50
MAX2065 toc51
8dB
16dB, 31dB
0dB, 1dB, 2dB, 4dB
INPUT MATCH vs. ANALOG ATTENUATOR
SETTING (LOW CURRENT MODE)
DAC CODE
INPUT MATCH (dB)
32 64 96 128 160 192 224 256
0
-5
-30
-10
-15
-20
-25
0
MAX2065 toc52
200MHz
450MHz
50MHz
1000MHz
OUTPUT MATCH vs. ANALOG ATTENUATOR
SETTING (LOW CURRENT MODE)
DAC CODE
OUTPUT MATCH (dB)
32 64 96 128 160 192 224 256
0
-5
-30
-10
-15
-20
-25
0
MAX2065 toc53
50MHz 200MHz
450MHz
1000MHz
NOISE FIGURE vs. RF FREQUENCY
(LOW CURRENT MODE)
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
250 450 650 850 1050
11
10
4
9
8
7
6
5
50
MAX2065 toc54
TC = +85°C TC = +25°C
TC = -40°C
NOISE FIGURE vs. RF FREQUENCY
(LOW CURRENT MODE)
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
250 450 650 850 1050
11
10
4
9
8
7
6
5
50
MAX2065 toc55
VCC = 4.75V, 5.00V, 5.25V
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
______________________________________________________________________________________ 13
OUTPUT P1dB vs. RF FREQUENCY
(LOW CURRENT MODE)
RF FREQUENCY (MHz)
OUTPUT P1dB (dBm)
250 450 650 850 1050
18
17
13
16
15
14
50
MAX2065 toc56
TC = +85°C
TC = +25°C
TC = -40°C
OUTPUT P1dB vs. RF FREQUENCY
(LOW CURRENT MODE)
RF FREQUENCY (MHz)
OUTPUT P1dB (dBm)
250 450 650 850 1050
18
17
13
16
15
14
50
MAX2065 toc57
VCC = 5.25V
VCC = 5.00V
VCC = 4.75V
OUTPUT IP3 vs. RF FREQUENCY
(LOW CURRENT MODE)
RF FREQUENCY (MHz)
OUTPUT IP3 (dBm)
250 450 650 850 1050
45
40
25
35
30
50
MAX2065 toc58
TC = +25°C
TC = -40°C
TC = +85°C
OUTPUT IP3 vs. RF FREQUENCY
(LOW CURRENT MODE)
RF FREQUENCY (MHz)
OUTPUT IP3 (dBm)
250 450 650 850 1050
45
40
25
35
30
50
MAX2065 toc59
VCC = 4.75V
VCC = 5.00V
VCC = 5.25V
OUTPUT IP3 vs. DIGITAL ATTENUATOR
STATE (LOW CURRENT MODE)
DIGITAL ATTENUATOR STATE (dB)
OUTPUT IP3 (dBm)
4 8 12 16 20 24 28 32
45
40
25
35
30
0
MAX2065 toc60
TC = -40°C LSB, USB
TC = +85°C LSB, USB
TC = +25°C LSB, USB POUT = -3dBm/TONE
RF = 200MHz
OUTPUT IP3 vs. ANALOG ATTENUATOR
STATE (LOW CURRENT MODE)
DAC CODE
OUTPUT IP3 (dBm)
32 64 98 128 160 192 224 256
45
40
25
35
30
0
MAX2065 toc61
TC = -40°C, +25°C, +85°C
TONE = LSB, USB
POUT = -3dBm/TONE
RF = 200MHz
2nd HARMONIC vs. RF FREQUENCY
(LOW CURRENT MODE)
RF FREQUENCY (MHz)
2nd HARMONIC (dBc)
250 450 650 850 1050
80
40
70
60
50
50
MAX2065 toc62
TC = -40°C
POUT = 3dBm
TC = +85°C
TC = +25°C
2nd HARMONIC vs. RF FREQUENCY
(LOW CURRENT MODE)
RF FREQUENCY (MHz)
2nd HARMONIC (dBc)
250 450 650 850 1050
80
40
70
60
50
50
MAX2065 toc63
VCC = 5.25V
VCC = 5.00V
VCC = 4.75V
POUT = 3dBm
2nd HARMONIC vs. DIGITAL ATTENUATOR
STATE (LOW CURRENT MODE)
DIGITAL ATTENUATOR STATE (dB)
2nd HARMONIC (dBc)
4 8 12 2016 24 28 32
80
60
75
70
65
0
MAX2065 toc64
TC = +85°C
TC = -40°C
TC = +25°C
POUT = 0dBm
RF = 200MHz
Typical Operating Characteristics (continued)
(VCC = +5.0V, LC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, internal reference
used, unless otherwise noted.)
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
14 ______________________________________________________________________________________
Typical Operating Characteristics (continued)
(VCC = +5.0V, LC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, internal reference
used, unless otherwise noted.)
2nd HARMONIC vs. ANALOG ATTENUATOR
STATE (LOW CURRENT MODE)
DAC CODE
2nd HARMONIC (dBc)
32 64 96 160128 192 224 256
80
60
75
70
65
0
MAX2065 toc65
TC = +85°C
TC = -40°C
TC = +25°C
POUT = 0dBm
RF = 200MHz
3rd HARMONIC vs. RF FREQUENCY
(LOW CURRENT MODE)
RF FREQUENCY (MHz)
3rd HARMONIC (dBc)
250 450 650 850 1050
110
60
100
90
80
70
50
MAX2065 toc66
TC = +85°C
TC = -40°C
TC = +25°C
POUT = 3dBm
OIP2 vs. RF FREQUENCY
(LOW CURRENT MODE)
RF FREQUENCY (MHz)
OIP2 (dBm)
250 450 650 850 1050
75
40
70
65
60
45
50
55
50
MAX2065 toc71
VCC = 5.25V
VCC = 5.00V
VCC = 4.75V
POUT = 0dBm/TONE
OIP2 vs. DIGITAL ATTENUATOR
STATE (LOW CURRENT MODE)
DIGITAL ATTENUATOR STATE (dB)
OIP2 (dBm)
84121620242832
75
40
70
65
60
45
50
55
0
MAX2065 toc72
POUT = -3dBm/TONE
RF = 200MHz
TC = +85°C
TC = -40°C
TC = +25°C
OIP2 vs. ANALOG ATTENUATOR
STATE (LOW CURRENT MODE)
DAC CODE
OIP2 (dBm)
6432 96 128 160 192 224 256
75
40
70
65
60
45
50
55
0
MAX2065 toc73
POUT = -3dBm/TONE
RF = 200MHz
TC = +85°C
TC = -40°C
TC = +25°C
3rd HARMONIC vs. RF FREQUENCY
(LOW CURRENT MODE)
RF FREQUENCY (MHz)
3rd HARMONIC (dBc)
250 450 650 850 1050
110
60
100
90
80
70
50
MAX2065 toc67
VCC = 5.25V
VCC = 5.00V
VCC = 4.75V
POUT = 3dBm
3rd HARMONIC vs. DIGITAL ATTENUATOR
STATE (LOW CURRENT MODE)
DIGITAL ATTENUATOR STATE (dB)
3rd HARMONIC (dBc)
4 8 12 16 20 24 28 32
100
70
95
90
85
75
80
0
MAX2065 toc68
TC = +25°C
TC = +85°C
TC = -40°C
POUT = 0dBm
RF = 200MHz
3rd HARMONIC vs. ANALOG ATTENUATOR
STATE (LOW CURRENT MODE)
DAC CODE
3rd HARMONIC (dBc)
32 64 96 128 160 192 224 256
100
70
95
90
85
75
80
0
MAX2065 toc69
TC = +25°C
TC = +85°C
TC = -40°C
POUT = 0dBm
RF = 200MHz
OIP2 vs. RF FREQUENCY
(LOW CURRENT MODE)
RF FREQUENCY (MHz)
OIP2 (dBm)
250 450 650 850 1050
75
40
70
65
60
45
50
55
50
MAX2065 toc70
TC = +25°C
TC = +85°C
TC = -40°C
POUT = 0dBm/TONE
MAX2065
Typical Operating Characteristics (continued)
(VCC = +3.3V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, internal DAC refer-
ence used, unless otherwise noted.)
GAIN vs. RF FREQUENCY
RF FREQUENCY (MHz)
GAIN (dB)
250 450 650 850 1050
21
13
18
17
19
20
16
15
14
50
MAX2065 toc75
TC = +85°C
TC = -40°C
VCC = 3.3V
TC = +25°C
GAIN vs. RF FREQUENCY
RF FREQUENCY (MHz)
GAIN (dB)
250 450 650 850 1050
21
13
18
17
19
20
16
15
14
50
MAX2065 toc76
VCC = 3.6V
VCC = 3.3V
VCC = 3.0V
INPUT MATCH OVER DIGITAL ATTENUATOR
SETTING vs. RF FREQUENCY
RF FREQUENCY (MHz)
INPUT MATCH (dB)
250 450 650 850 1050
0
-30
-10
-15
-5
-20
-25
50
MAX2065 toc77
16dB
4dB
0dB, 8dB
1dB, 2dB
VCC = 3.3V
31dB
OUTPUT MATCH OVER DIGITAL ATTENUATOR
SETTING vs. RF FREQUENCY
RF FREQUENCY (MHz)
OUTPUT MATCH (dB)
200 400 600 800 1000
0
-30
-10
-15
-5
-20
-25
0
MAX2065 toc78
16dB, 31dB
0dB, 1dB, 2dB, 4dB
VCC = 3.3V
8dB
INPUT MATCH
vs. ANALOG ATTENUATOR SETTING
DAC CODE
INPUT MATCH (dB)
32 64 96 128 160 192 224 256
0
-30
-10
-15
-5
-20
-25
0
MAX2065 toc79
1000MHz
200MHz
450MHz
50MHz
VCC = 3.3V
NOISE FIGURE vs. RF FREQUENCY
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
250 450 650 850 1050
11
4
9
8
7
10
6
5
50
MAX2065 toc81
VCC = 3.3V
TC = +85°C
TC = +25°C
TC = -40°C
NOISE FIGURE vs. RF FREQUENCY
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
250 450 650 850
11
4
9
8
7
10
6
5
50
MAX2065 toc82
VCC = 3.3V
VCC = 3.0V
VCC = 3.6V
SUPPLY CURRENT vs. VCC
VCC (V)
SUPPLY CURRENT (mA)
3.15 3.30 3.45 3.60
75
45
65
55
3.00
MAX2065 toc74
TC = +85°C
TC = -40°C
TC = +25°C
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
______________________________________________________________________________________ 15
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
16 ______________________________________________________________________________________
OUTPUT P1dB vs. RF FREQUENCY
RF FREQUENCY (MHz)
OUTPUT P1dB (dBm)
250 450 650 850 1050
17
9
10
15
14
13
16
12
11
50
MAX2065 toc84
VCC = 3.0V
VCC = 3.6V
VCC = 3.3V
OUTPUT IP3 vs. RF FREQUENCY
RF FREQUENCY (MHz)
OUTPUT IP3 (dBm)
250 450 650 850 1050
50
20
25
40
35
45
30
50
MAX2065 toc85
VCC = 3.3V
TC = +25°C
TC = +85°C
TC = -40°C
OUTPUT IP3 vs. RF FREQUENCY
RF FREQUENCY (MHz)
OUTPUT IP3 (dBm)
250 450 650 850 1050
50
20
25
40
35
45
30
50
MAX2065 toc86
VCC = 3.0V
VCC = 3.6V
VCC = 3.3V
OUTPUT IP3
vs. DIGITAL ATTENUATOR STATE
DIGITAL ATTENUATOR STATE (dB)
OUTPUT IP3 (dBm)
4 8 12 16 20 24 28 32
39
38
34
37
36
35
0
MAX2065 toc87
TC = -40°C, +25°C, +85°C
TONE = LSB, USB
POUT = -3dBm/TONE
RF = 200MHz
VCC = 3.3V
OUTPUT IP3
vs. ANALOG ATTENUATOR STATE
DAC CODE
OUTPUT IP3 (dBm)
32 64 96 128 160 192 224 256
45
40
25
35
30
0
MAX2065 toc88
TC = -40°C, +25°C, +85°C
TONE = LSB, USB
POUT = -3dBm/TONE
RF = 200MHz
VCC = 3.3V
2nd HARMONIC vs. RF FREQUENCY
RF FREQUENCY (MHz)
2nd HARMONIC (dBc)
250 450 650 850 1050
80
30
40
70
60
50
50
MAX2065 toc89
TC = -40°C
POUT = 3dBm
TC = +85°C
TC = +25°C
VCC = 3.3V
2nd HARMONIC vs. RF FREQUENCY
RF FREQUENCY (MHz)
2nd HARMONIC (dBc)
250 450 650 850 1050
80
30
40
70
60
50
50
MAX2065 toc90
POUT = 3dBm
VCC = 3.3V
VCC = 3.6V
VCC = 3.0V
2nd HARMONIC
vs. DIGITAL ATTENUATOR STATE
DIGITAL ATTENUATOR STATE (dB)
2nd HARMONIC (dBc)
4 8 12 16 20 24 28 32
70
50
65
60
55
0
MAX2065 toc91
TC = -40°C
POUT = 0dBm
TC = +85°C
TC = +25°C
VCC = 3.3V
RF = 200MHz
Typical Operating Characteristics (continued)
(VCC = +3.3V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, internal DAC refer-
ence used, unless otherwise noted.)
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
______________________________________________________________________________________ 17
Typical Operating Characteristics (continued)
(VCC = +3.3V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC= +25°C, internal DAC refer-
ence used, unless otherwise noted.)
3rd HARMONIC vs. RF FREQUENCY
RF FREQUENCY (MHz)
3rd HARMONIC (dBc)
250 450 650 850 1050
110
50
100
90
80
70
60
50
MAX2065 toc93
TC = -40°C
POUT = 3dBm
TC = +85°C
TC = +25°C
VCC = 3.3V
3rd HARMONIC vs. RF FREQUENCY
RF FREQUENCY (MHz)
3rd HARMONIC (dBc)
250 450 650 850 1050
110
50
100
90
80
70
60
50
MAX2065 toc94
POUT = 3dBm
VCC = 3.3V
VCC = 3.6V
VCC = 3.0V
3rd HARMONIC
vs. DIGITAL ATTENUATOR STATE
DIGITAL ATTENUATOR STATE (dB)
3rd HARMONIC (dBc)
4 8 12 16 20 24 28 32
90
70
85
80
75
0
MAX2065 toc95
TC = -40°C
POUT = 0dBm
TC = +25°C, +85°CVCC = 3.3V
RF = 200MHz
3rd HARMONIC
vs. ANALOG ATTENUATOR STATE
DAC CODE
3rd HARMONIC (dBc)
32 64 96 128 160 192 224 256
110
50
100
90
80
70
60
0
MAX2065 toc96
TC = -40°C
POUT = 0dBm
TC = +85°C
TC = +25°C
VCC = 3.3V
RF = 200MHz
OIP2 vs. RF FREQUENCY
RF FREQUENCY (MHz)
OIP2 (dBm)
250 450 650 850 1050
70
30
60
50
40
50
MAX2065 toc97
TC = -40°C
POUT = 0dBm/TONE
TC = +85°C
TC = +25°C
VCC = 3.3V
OIP2 vs. RF FREQUENCY
RF FREQUENCY (MHz)
OIP2 (dBm)
250 450 650 850 1050
70
30
60
50
40
50
MAX2065 toc98
POUT = 0dBm/TONE
VCC = 3.3V VCC = 3.6V
VCC = 3.0V
OIP2 vs. DIGITAL ATTENUATOR STATE
DIGITAL ATTENUATOR STATE (dB)
OIP2 (dBm)
4 8 12 16 20 24 28 32
70
30
60
50
40
0
MAX2065 toc99
TC = -40°C
TC = +25°C
POUT = 0dBm/TONE
TC = +85°CVCC = 3.3V
RF = 200MHz
OIP2 vs. ANALOG ATTENUATOR STATE
DAC CODE
OIP2 (dBm)
32 64 96 128 160 192 224 256
70
30
60
50
40
0
MAX2065 toc100
TC = -40°C
TC = +25°C
POUT = -3dBm/TONE
TC = +85°CVCC = 3.3V
RF = 200MHz
2nd HARMONIC
vs. ANALOG ATTENUATOR STATE
DAC CODE
2nd HARMONIC (dBc)
32 64 96 128 160 192 224 256
80
30
70
60
50
40
0
MAX2065 toc92
TC = -40°C
POUT = 0dBm
TC = +85°C
TC = +25°C
VCC = 3.3V
RF = 200MHz
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
18 ______________________________________________________________________________________
Pin Description
PIN NAME DESCRIPTION
1, 16, 19, 22,
24–28, 30,
31, 33–36
GND Ground
2 VREF_SELECT DAC Reference Voltage Selection Logic Input. Logic 1 = internal DAC reference voltage,
Log i c 0 = exter nal D AC r efer ence vol tag e. Log i c i np ut d i sab l ed ( d on’ t car e) w hen V D AC _E N = Log i c 0.
3 VDAC_EN DAC Enable/Disable Logic Input. Logic 0 = disable DAC circuit, Logic 1 = enable DAC circuit.
4 DATA SPI Data Digital Input
5 CLK SPI Clock Digital Input
6CS SPI Chip-Select Digital Input
7 VDD_LOGIC Digital Logic Supply Input
8 SER/PAR Digital Attenuator SPI or Parallel Control Selection Logic Input. Logic 0 = parallel control,
Logic 1 = serial control.
9 STATE_A Digital Attenuator Preprogrammed Attenuation State Logic Input
State A State B Digital Attenuator
Logic = 0 Logic = 0 Preprogrammed State 1
Logic = 1 Logic = 0 Preprogrammed State 2
Logic = 0 Logic = 1 Preprogrammed State 3
10 STATE_B
Logic = 1 Logic = 1 Preprogrammed State 4
11 D4 16dB Attenuator Logic Input. Logic 0 = disable, Logic 1 = enable.
12 D3 8dB Attenuator Logic Input. Logic 0 = disable, Logic 1 = enable.
13 D2 4dB Attenuator Logic Input. Logic 0 = disable, Logic 1 = enable.
14 D1 2dB Attenuator Logic Input. Logic 0 = disable, Logic 1 = enable.
15 D0 1dB Attenuator Logic Input. Logic 0 = disable, Logic 1 = enable.
17 AMP_OUT Driver Amplifier Output (50Ω)
18 RSET Driver Amplifier Bias-Setting. See the External Bias section.
20 AMP_IN Driver Amplifier Input (50Ω)
21 VC C _AMP Driver Amplifier Supply Voltage Input
23 ATTEN2_OUT 5-Bit Digital Attenuator Output (50Ω)
29 ATTEN2_IN 5-Bit Digital Attenuator Input (50Ω)
32 ATTEN1_OUT Analog Attenuator Output (50Ω)
37 ATTEN1_IN Analog Attenuator Input (50Ω)
38 VC C _ANALOG Analog Bias and Control Supply Voltage Input
39 AN ALOG_V C TRL Analog Attenuator Voltage Control Input
40 VREF_IN External DAC Voltage Reference Input
—EP
E xp osed P ad . Inter nal l y connected to GN D . C onnect E P to GN D for p r op er RF p er for m ance and
enhanced ther m al d i ssi p ati on.
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
______________________________________________________________________________________ 19
Detailed Description
The MAX2065 high-linearity analog/digital variable-gain
amplifier is a general-purpose, high-performance
amplifier designed to interface with 50Ωsystems oper-
ating in the 50MHz to 1000MHz frequency range.
The MAX2065 integrates one digital attenuator and one
analog attenuator to provide 62dB of total gain control,
as well as a driver amplifier optimized to provide high
gain, high IP3, low noise figure, and low power consump-
tion. For applications that do not require high linearity, the
bias current of the amplifier can be adjusted by an exter-
nal resistor to further reduce power consumption.
The digital attenuator is controlled as a slave peripheral
using either the SPI-compatible interface or a parallel
bus with 31dB total adjustment range in 1dB steps. An
added feature allows “rapid-fire” gain selection
between each of the four unique steps (prepro-
grammed by the user through the SPI-compatible inter-
face). The 2-pin control allows the user to quickly
access any one of four customized attenuation states
without reprogramming the SPI bus. The analog attenu-
ator is controlled using an external voltage or through
the SPI-compatible interface using an on-chip DAC.
Because each of the three stages has its own external
RF input and RF output, this component can be config-
ured to either optimize NF (amplifier configured first),
OIP3 (amplifier last), or a compromise of NF and OIP3.
The device’s performance features include 22dB stand-
alone amplifier gain (amplifier only), 6.5dB NF at maxi-
mum gain (includes attenuator insertion loss for both
attenuators), and a high OIP3 level of +42dBm. Each of
these features makes the MAX2065 an ideal VGA for
numerous receiver and transmitter applications.
In addition, the MAX2065 operates from a single +5V
supply, or a single +3.3V supply with slightly reduced
performance, and has adjustable bias to trade current
consumption for linearity performance.
Analog and 5-Bit Digital
Attenuator Control
The MAX2065 integrates one analog attenuator and
one 5-bit digital attenuator to achieve a high level of
dynamic range. The analog attenuator has a 31dB
range and is controlled using an external voltage or
through the 3-wire serial peripheral interface (SPI) using
an on-chip 8-bit DAC. The digital attenuator has a 31dB
control range, a 1dB step size, and is programmed
through the 3-wire SPI. See the
Applications Information
section and Table 1 for attenuator programming details.
The attenuators can be used for both static and dynam-
ic power control.
Driver Amplifier
The MAX2065 includes a high-performance driver with
a fixed gain of 22dB. The driver amplifier circuit is opti-
mized for high linearity for the 50MHz to 1000MHz fre-
quency range.
Applications Information
SPI Interface and Attenuator Settings
The digital attenuator is programmed through the 3-wire
SPI/MICROWIRE™-compatible serial interface using
5-bit words. Twenty-eight bits of data are shifted in MSB
first and is framed by CS. When CS is low, the clock is
active and data is shifted on the rising edge of the
clock. When CS transitions high, the data is latched
and the attenuator setting changes (Figure 1). See
Table 2 for details on the SPI data format.
Table 1. Control Logic
VDAC_EN SER/PAR VR EF _ SEL EC T ANALOG
ATTENUATOR
DIGITAL
ATTENUATOR D/A CONVERTER
00X
Controlled by external
control voltage Parallel controlled Disabled
101
Controlled by on-chip
DAC Parallel controlled Enabled (DAC uses on-
chip voltage reference)
01X
Controlled by external
control voltage SPI controlled Disabled
110
Controlled by on-chip
DAC SPI controlled
Enabled (DAC uses
external voltage
reference)
X = Don’t care.
MICROWIRE is a trademark of National Semiconductor Corp.
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
20 ______________________________________________________________________________________
DATA
CLOCK
CS
tEWS tEW
tES
tCW
tCS
DN
MSB LSB
D(N-1) D1 D0
tCH
Figure 1. MAX2065 SPI Timing Diagram
Table 2. SPI Data Format
FUNCTION BIT DESCRIPTION
D27 (MSB) 16dB step (MSB of the 5-bit word used to program the digital attenuator state 4)
D26 8dB step
D25 4dB step
D24 2dB step
Digital Attenuator State 4
D23 1dB step (LSB)
D22
D21
D20
D19
Digital Attenuator State 3
D18
5-bit word used to program the digital attenuator state 3 (see the description for digital
attenuator state 4)
D17
D16
D15
D14
Digital Attenuator State 2
D13
5-bit word used to program the digital attenuator state 2 (see the description for digital
attenuator state 4)
D12
D11
D10
D9
Digital Attenuator State 1
D8
5-bit word used to program the digital attenuator state 1 (see the description for digital
attenuator state 4)
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
______________________________________________________________________________________ 21
Table 2. SPI Data Format (continued)
FUNCTION BIT DESCRIPTION
D7 Bit 7 (MSB) of on-chip DAC used to program the analog attenuator
D6 Bit 6 of DAC
D5 Bit 5 of DAC
D4 Bit 4 of DAC
D3 Bit 3 of DAC
D2 Bit 2 of DAC
D1 Bit 1 of DAC
On-Chip DAC
D0 (LSB) Bit 0 (LSB) of the on-chip DAC
Attenuator and DAC Operation
The analog attenuator is controlled by an external con-
trol voltage applied at ANALOG_VCTRL (pin 39) or by
the on-chip 8-bit DAC, while the digital attenuator is con-
trolled through the SPI-compatible interface or parallel
bus. The DAC enable/disable logic-input pin
(VDAC_EN), digital attenuator SPI or parallel control
selection logic-input pin (SER/PAR), and the DAC refer-
ence voltage selection logic-input pin (VREF_SELECT)
determine how the attenuators are controlled. The on-
chip DAC can also be enabled or disabled. When the
DAC is enabled, either the on-chip voltage reference or
the external voltage reference can be selected. See
Table 1 for the attenuator and DAC operation truth table.
Digital Attenuator Settings
Using the Parallel Control Bus
To capitalize on its fast 25ns switching capability, the
MAX2065 offers a supplemental 5-bit parallel control
interface. The digital logic attenuator-control pins
(D0–D4) enable the attenuator stages (Table 3).
Direct access to this 5-bit bus enables the user to avoid
any programming delays associated with the SPI
interface. One of the limitations of any SPI bus is the
speed at which commands can be clocked into each
peripheral device. By offering direct access to the 5-bit
parallel interface, the user can quickly shift between
digital attenuator states needed for critical “fast-attack”
automatic gain control (AGC) applications.
“Rapid-Fire” Preprogrammed
Attenuation States
The MAX2065 has an added feature that provides
“rapid fire” gain selection between four prepro-
grammed attenuation steps. As with the supplemental
5-bit bus mentioned above, this “rapid fire” gain selec-
tion allows the user to quickly access any one of four
customized digital attenuation states without incurring
the delays associated with reprogramming the device
through the SPI bus.
The switching speed is comparable to that achieved
using the supplemental 5-bit parallel bus. However, by
employing this specific feature, the digital attenuator
I/O is further reduced by a factor of either 5 or 2.5 (5
control bits vs. 1 or 2, respectively) depending on the
number of states desired.
Table 3. Digital Attenuator Settings (Parallel Control)
INPUT LOGIC = 0 (OR GROUND) LOGIC = 1
D0 Disable 1dB attenuator, or when SPI is default programmer Enable 1dB attenuator
D1 Disable 2dB attenuator, or when SPI is default programmer Enable 2dB attenuator
D2 Disable 4dB attenuator, or when SPI is default programmer Enable 4dB attenuator
D3 Disable 8dB attenuator, or when SPI is default programmer Enable 8dB attenuator
D4 Disable 16dB attenuator, or when SPI is default programmer Enable 16dB attenuator
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
22 ______________________________________________________________________________________
The user can employ the STATE_A and STATE_B logic-
input pins to apply each step as required (Table 4).
Toggling just the STATE_A pin (one control bit) yields
two preprogrammed attenuation states; toggling both
the STATE_A and STATE_B pins together (two control
bits) yield four preprogrammed attenuation states.
As an example, assume that the AGC application
requires a static attenuation adjustment to trim out gain
inconsistencies within a receiver lineup. The same AGC
circuit can also be called upon to dynamically attenuate
an unwanted blocker signal that could de-sense the
receiver and lead to an ADC overdrive condition. In this
example, the MAX2065 would be preprogrammed
(through the SPI bus) with two customized attenuation
states—one to address the static gain trim adjustment,
the second to counter the unwanted blocker condition.
Toggling just the STATE_A control bit enables the user
to switch quickly between the static and dynamic atten-
uation settings with only one I/O pin.
If desired, the user can also program two additional
attenuation states by using the STATE_B control bit as
a second I/O pin. These two additional attenuation set-
tings are useful for software-defined radio applications
where multiple static gain settings may be needed to
account for different frequencies of operation, or where
multiple dynamic attenuation settings are needed to
account for different blocker levels (as defined by multi-
ple wireless standards).
Cascaded OIP3 Considerations
Due to both attenuator’s finite IP3 performance, the
cascaded OIP3 degrades when both attenuators are
set at higher attenuation states.
External Bias
Bias currents for the driver amplifier are set and opti-
mized through external resistors. Resistors R1 and R1A
connected to RSET (pin 18) set the bias current for the
amplifier. The external biasing resistor values can be
increased for reduced current operation at the expense
of performance.
Table 4. Preprogrammed Attenuation
State Settings
STATE_A STATE_B DIGITAL ATTENUATOR
0 0 Preprogrammed attenuation state 1
1 0 Preprogrammed attenuation state 2
0 1 Preprogrammed attenuation state 3
1 1 Preprogrammed attenuation state 4
Table 5. Typical Application Circuit Component Values (HC Mode)
DESIGNATION VALUE SIZE VENDOR DESCRIPTION
C1, C2, C7, C11 10nF 0402 Murata Mfg. Co., Ltd. X7R
C3, C4, C6, C8, C9, C10 1000pF 0402 Murata Mfg. Co., Ltd. C0G ceramic capacitor
C12, C13 150pF 0402 Murata Mfg. Co., Ltd. C0G ceramic capacitor
L1 470nH 1008 Coilcraft, Inc. 1008CS-471XJLC
R1, R1A 10Ω0402 Panasonic Corp. 1%
R2 (+3.3V applications only) 1kΩ0402 Panasonic Corp. 1%
R3 (+3.3V applications only) 2kΩ0402 Panasonic Corp. 1%
R4 (+5V applications and
using internal DAC only) 47kΩ0402 Panasonic Corp. 1%
U1 40-pin thin QFN-EP
(6mm x 6mm)
Maxim Integrated
Products, Inc. MAX2065ETL+
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
______________________________________________________________________________________ 23
+5V and +3.3V Supply Voltage
The MAX2065 features an optional +3.3V supply voltage
operation with slightly reduced linearity performance.
Layout Considerations
The pin configuration of the MAX2065 has been opti-
mized to facilitate a very compact physical layout of the
device and its associated discrete components.
The exposed paddle (EP) of the MAX2065’s 40-pin thin
QFN-EP package provides a low thermal-resistance
path to the die. It is important that the PCB on which the
MAX2065 is mounted be designed to conduct heat
from the EP. In addition, provide the EP with a low-
inductance path to electrical ground. The EP must be
soldered to a ground plane on the PCB, either directly
or through an array of plated via holes.
Amplitude Overshoot Reduction
To reduce amplitude overshoot during digital attenua-
tor state change, connect a bandpass filter (parallel
LC type) from ATTEN2_OUT (pin 23) to ground. L =
18nH and C = 47pF are recommended for 169MHz
operation (Figure 2). Contact the factory for recom-
mended components for other operating frequencies.
26
25
24
23
22
C8
21
GND
GND
CL
C6 C7
GND
ATTEN2_OUT
GND
VCC_AMP
VCC
Figure 2. Bandpass Filter to Reduce Amplitude Overshoot
Table 6. Typical Application Circuit Component Values (LC Mode)
DESIGNATION VALUE SIZE VENDOR DESCRIPTION
C1, C2, C7, C11 10nF 0402 Murata Mfg. Co., Ltd. X7R
C3, C4, C6, C8, C9, C10 1000pF 0402 Murata Mfg. Co., Ltd. C0G ceramic capacitor
C12, C13 150pF 0402 Murata Mfg. Co., Ltd. C0G ceramic capacitor
L1 470nH 1008 Coilcraft, Inc. 1008CS-471XJLC
R1 24Ω0402 Vishay 1%
R1A 0.01µF 0402 Murata Mfg. Co., Ltd. X7R
R2 (+3.3V applications only) 1kΩ0402 Panasonic Corp. 1%
R3 (+3.3V applications only) 2kΩ0402 Panasonic Corp. 1%
R4 (+5V applications and
using internal DAC only) 47kΩ0402 Panasonic Corp. 1%
U1 40-pin thin QFN-EP
(6mm x 6mm)
Maxim Integrated
Products, Inc. MAX2065ETL+
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
24 ______________________________________________________________________________________
VCC_ANALOG
38
D2
13
D0
15
36
GND
D1 ATTEN1_IN
14
37
GND GND
16
35
AMP_OUT GND
17
34
GND
33
RSET
18
ATTEN1_OUT
32
GND
19
AMP_IN GND
20
31
D3 ANALOG_VCTRL
12
39
D4 VREF_IN
11
40
238
SER/PAR ATTEN2_OUT
6
CS GND
25
247
VDD_LOGIC GND
5
CLK GND
26
4
DATA GND
27
3GNDVDAC_EN 28
2ATTEN2_INVREF_SELECT
VREF_IN
29
229
STATE_A GND
2110
STATE_B VCC_AMP
130
GND
GND
+
ANALOG ATTENUATOR
VREF
DAC
EP DRIVER AMP
SPI INTERFACE
DIGITAL
ATTENUATOR
C1
C4
RF OUTPUT
L1
C3
VDD
C13
C11
C12
C2
VCC
VCC
C7C6
VCC
R1
R1A
R2
R3
C9
C8
C10
RF INPUT
R4
Typical Application Circuit
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
______________________________________________________________________________________ 25
VCC_ANALOG
38
D2
13
D0
15
36
GND
D1 ATTEN1_IN
14
37
GND GND
16
35
TQFN
EXPOSED PADDLE ON BOTTOM.
CONNECT EP TO GND.
GND
17
34
GND
33
RSET
AMP_OUT
18
ATTEN1_OUT
32
GND
19
AMP_IN GND
20
31
D3 ANALOG_VCTRL
12
39
D4 VREF_IN
11
40
238
SER/PAR ATTEN2_OUT
6
CS GND
25
247
VDD_LOGIC GND
5
CLK GND
26
4
DATA GND
27
3GNDVDAC_EN 28
2ATTEN2_INVREF_SELECT 29
229
STATE_A GND
2110
STATE_B VCC_AMP
1
TOP VIEW
30 GND
GND
+
ANALOG ATTENUATOR
VREF
DAC
DRIVER AMP
SPI INTERFACE
DIGITAL
ATTENUATOR
Pin Configuration/Functional Block Diagram
Chip Information
PROCESS: SiGe BiCMOS
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
26 ______________________________________________________________________________________
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to www.maxim-ic.com/packages.)
QFN THIN.EPS
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________
27
© 2008 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to www.maxim-ic.com/packages.)