VRsmM IrRMs (maximum values for continuous operation) VARM 130A | 130A [| 300A | 300A irav (sin. 180; Tcase = ...C; 50 Hz) V 60 A (94C) 60 A (94 C) 160 A (86 C) 160 A (86 C) 400 - - SKFH 110 /04.. ~ 800 | SKFH40/08 | SKFH60/08.. | SKFH 110 /08..| SKKD 160 M08 1000 SKFH 40/10 | SKFH60/10.. | SKFH110/10..| SKKD 160 M10 1200 SKFH 40/12 | SKFH60/12.. | SKFH110/12..| SKKD 160 M 12 1400 - - - SKKD 160 M 14 v) Symbol | Conditions Sect eo! SEN 110! lcrav _| Sin. 180; Tease = 85C 73.4 163 A lrsm Ty = 25C 1800 A 7000 A Tyjmax 1500 A 6000 A i*t Ty = 25C 16000 A2s | 245000 As Tyjmax 11000A?s | 180000 A*s tr Ty = 25C: ir = 1A; dir/dt = 15A/psiVa = 30V 2 1s 2 is Qr Tyj maxi Ip = 100A; 65 nC 65 uC lam di/dt = = 30A/us;VR = 30V 35 A 45A Ir Ty = 25C; VR = Vranm | 1mA 2mA Tyj max; VA = VARM 10 mA 50 mA VE Ty = 25C; IrF=...A 1,6 V (200 A) 1,5 V (400 A) Varo) T. 1,0V 1,25V iT ne 2mQ 0,5mQ ie er diode/per module 0,4/0,2 C/W" p,19/0,095C/W" Rihch P P 0,2/0,1 C/W | 0,06/0,03 C/W TW -A0... +125C) 40... +130C Tstg 40... +125 TC} -40... +130C Vis) | a.c.50Hzir.m.s; t s/1 min. 3000 V ~ /2500 V ~?) Mi Case to heatsink 5Nm/44ib.in.| 5Nm/44 Ib. in. Sl units/ + 15% + 15% Ma Busbars to terminals| US units |3Nm/26Ib.in.| 9Nm/80 lb. in. + 15% + 15% w approx. 120g 800g Case |pageB2-12 A& . SKKD A116 Case |pageB2-32 SKFH At4 Fast Thyristor/ Diode Modules SEMIPACK 1 SKFH 40 Diode data" SKFH 60 Diode data SEMIPACK 3 SKKD 160M SKFH 110 Diode data) Features Heat transfer through ceramic isotated metal baseplate Hard soldered joints for high reliability SKKD 160 M: Precious metal pressure contacts UL recognized, file no. E 63 632 Typicat Applications Self-commutated inverters DC choppers AC motor speed control inductive heating Uninterruptible power supplies Electronic welders General power switching applications3000 SKFH 40 * i = SKFH GO Tease 60 C 1000 500 306 50 500 | 200 Hz i 0 100 f= 2000 50 fe 30 tp 10 us 10 Fig. 12a Rated sinusoidal peak forward current 3000 a|_1,SKFH 40 x 2SKFH GO FoF GC OeTE Tease 100 C 1900 500 300 100 50 ! FM f= 1000 304, 4 10 tp 1 10 us 10 Fig. 12c Rated sinusoidal peak forward current 10000 .1, SKKD 160 M 2 SKFH110 4 th Saco Tcase= 80 C J i 3000 1600 500 300 rn) 100 tp 1 10 ys 10! Fig. 12e Rated sinusoidal peak forward current 3000 1, SKFH 40 * = SKFH GO Tcase* 80 C 1000 $00 300 100 * 50 lem 30 10 tp 10 us 10 Fig. 12b Rated sinusoidal peak forward current 10000 ab1,S$KKD 160M 2 SKFH 110 X 5000 Tcase 60 C 3000 1000 50 500 500 | 200 Hz 300 {900 TEM 100 10 fp 10 us 10 Fig. 12d Rated sinusoidal peak forward current 10000 aE-1, SKKD 160 M 2 SKFH 110 4 a 5000 Teqse7 100 C - 3000 1000 5900 300 Hz FM 500 100 tp 1 10 ws 10! Fig. 12f Rated sinusoidal peak forward currentSEMIARUN 1000 SKFH 40 * SKFH GO 0,02 + 005 01-02 500 300 190 30 0,2 I FM | nd 10 4 . 0 tp 10 us 10 Fig. 13 a Forward energy dissipation, sinusoidal 3000 KFH 6O 1000 500 300 100 50 EM 30 ae 10 tp 10 us 10 Fig. 14a Rated rectangular peak forward current 3000 A 1,SKFH 40 * = SKFH GO E oF UCELEE Tease 7 100 SC 1000 500 300 100 50 200 lena = 1000 00 30 4 10 tp 1 10 us 10 Fig. 14 Rated rectangular peak forward current 109000 A 1,SKKD 160 M 2 SKFH 110 &* 5000 4000 We= ot | 02) [ 0.5 1 2 50 1000 500 100 . 4 10 tp 10 us 10 Fig. 13 b Forward energy dissipation, sinusoidal 3000 A 1,SKFH 40 & = SKFH GO Tease= 80 C 4 ip Vp 600V dir A ~ 7 100 7 1000 500 300 100 50 IFN f= 2000 30 4 tp 10 us 10 Fig. 14b Rated rectangular peak forward current 10000 ata, SKKD 160M 2 SKFH 110 & ae 5000 Tease? 60 a qipe! dif A ae OTS 3000 1000 500 300 1000 500 | 200 Hz 0 tem 100 10 tp 10 us 10 Fig. 14d Rated rectangular peak forward current10000 afi, SKKD 160. 2 SKFH110 5000 & Tegga= 80 CC 3000 1000 500 300 500 | 200 Hz IEMA f= 2000 |1000 100 10 tp 10 us 10 Fig. 14 Rated rectangular peak forward current 1000 A .2KFH 40 2 SKFH 6O We=T 005 t 0,10, 05 54 i 2 500 : 300 10 160 50 30 IFA 10 tp 10 us 10 Fig. 15 a Forward energy dissipation, rectangular 400 pc|_1, SKFH 40 x 2 SKFH 6O 300 Tyj= 125 OC 200 100 Qr 0 0 -di/dt 50 100 150 A/ps 200 Fig. 16a Recovered charge vs. current decrease 10000 act1, SKKD 160M z SKFH110 4 5000 Teqsa 100 % 3000 1000 500 300 FM 100 tp 10 us 10 Fig. 14f Rated rectangular peak forward current 10000 A 5000 ; : 7 e eS 1 on 3000 1o 20 50 J 1000 500 300 'eM 100 ; 10' tp 10 us 10 Fig. 15 b Forward energy dissipation, rectangular 1000 wcft, 160 M 300 100 =30 mA Q,, 10 -digidt = 30 wo 300 Alps 1000 Fig. 16 b Recovered charge vs. current decreaseSENIUENKUN 300 A 100 lena 9 O-digidt 50 100 150 0 Alps 200 Fig. 17 a Peak recovery current vs. current decrease 101 Zith}t 1072 107 10?) =610 10? s 104 Fig. 18 a Transient thermal impedance vs. time 300 ari 6 40 K % 100 ig % Ye 05 1 15 V2 Fig. 19 a Forward characteristics 1000 300 100 30 kn 10 10 ~dig {dt 30 100 3000 Ajys = 1000 Fig. 17 b Peak recovery current vs. current decrease 10 C 4 ; 160 M Wt2 SKFH 110 & 3 10 107 3 Zine -3 wt 7 1071 10 40! 10? Fig. 18 b Transient thermal! impedance vs. time 0 5 104 500 At4 160 SKFH 110 # 200 100 0 O5 1 15 Vv 2 Fig. 19 b Forward characteristicsIF(ov) IF(ov) FSM lFSM 18+ 1 SKFH 40 5. tpsalA} 1,8 -\4 . SKKD 160 M Iesp(A) 60 Tyjr25C |Tyj= 125 C 110 * Tyj=25 OC |Tyj= 130 OC 16 46 1800 1500 14 14 1,2 1,2 1 1 0,8 08 0,6 06 04 04 w* 5 tot 102 ms 107 wo of to! 102 ms 103 Fig. 20a Surge overload current vs. time Fig. 20 b Surge overload current vs. time