Features

- Incorporates the ARM7TDMI[™] ARM[®] Thumb[®] Processor Core
 - High-performance 32-bit RISC Architecture
 - High-density 16-bit Instruction Set
 - Leader in MIPS/Watt
 - Embedded ICE (In-Circuit Emulation)
- 8K Bytes On-chip SRAM
 - 32-bit Data Bus
 - Single-clock Cycle Access
- Fully-programmable External Bus Interface (EBI)
 - Maximum External Address Space of 64M Bytes
 - Up to 8 Chip Selects
 - Software Programmable 8-/16-bit External Data Bus
- 8-level Priority, Individually Maskable, Vectored Interrupt Controller
 - 4 External Interrupts, Including a High-priority Low-latency Interrupt Request
- 32 Programmable I/O Lines
- 3-channel 16-bit Timer/Counter
 - 3 External Clock Inputs
 - 2 Multi-purpose I/O Pins per Channel
- 2 USARTs
 - 2 Dedicated Peripheral Data Controller (PDC) Channels per USART
- Programmable Watchdog Timer
- Advanced Power-saving Features
 - CPU and Peripheral Can be Deactivated Individually
- Fully Static Operation: 0 Hz to 40 MHz Internal Frequency Range at 3.0 V, 85°C
- 1.8V to 3.6V Operating Range
- Available in a 100-lead TQFP Package

Description

The AT91M40800 microcontroller is a member of the Atmel AT91 16-/32-bit microcontroller family, which is based on the ARM7TDMI processor core. This processor has a high-performance 32-bit RISC architecture with a high-density 16-bit instruction set and very low power consumption. In addition, a large number of internally banked registers result in very fast exception handling, making the device ideal for real-time control applications.

The AT91M40800 microcontroller features a direct connection to off-chip memory, including Flash, through the fully-programmable External Bus Interface (EBI). An eight-level priority vectored interrupt controller, in conjunction with the Peripheral Data Controller, significantly improves the real-time performance of the device.

The device is manufactured using Atmel's high-density CMOS technology. By combining the ARM7TDMI processor core with an on-chip high-speed memory and a wide range of peripheral functions on a monolithic chip, the AT91M40800 is a powerful microcontroller that offers a flexible, cost-effective solution to many compute-intensive embedded control applications.

AT91 ARM[®] Thumb[®] Microcontrollers

AT91M40800 Electrical Characteristics

Absolute Maximum Ratings*

Operating Temperature (Industrial)40°C to + 85°C	*N
Storage Temperature60°C to + 150°C	
Voltage on Any Input Pin with Respect to Ground0.5V to + 5.5V	
Maximum Operating Voltage4.6V	
DC Output Current6 mA	

NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

The following characteristics are applicable to the Operating Temperature range: $T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise specified and are certified for a Junction Temperature up to $T_J = 100^{\circ}C$.

Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{DD}	DC Supply			1.8		3.6	V
V _{IL}	Input Low Voltage	V _{DD} = 3.3V				0.8	V
V _{IH}	Input High Voltage	V _{DD} = 3.3V		2.0			V
V _{OL}	Output Low Voltage	$I_{OL} = 2.0 \text{ mA}, V_{DD} = 3.3 \text{V}$				0.4	V
V _{OH}	Output High Voltage	$I_{OH} = 2.0 \text{ mA}, V_{DD} = 3.3 \text{V}$		2.4			V
I _{LEAK}	Input Leakage Current					4	μA
I _{PULL}	Input Pull-up Current	$V_{DD} = 3.6V, V_{IN} = 0V$				350	μA
C _{IN}	Input Capacitance					6.6	pF
		V _{DD} = 3.6V; MCKI = 0 Hz	$T_A = 25^{\circ}C$			12.5	
I _{SC} Static Cu	Static Current	All inputs driven TMS, TDI, TCK, NRST = 1	$T_A = 85^{\circ}C$			250	μA

Table 1. DC Characteristics

Power Consumption

The values in the following tables are measured values in the operating conditions indicated (i.e., $V_{DD} = 3.3V$ or 2.0V, $T_A = 25^{\circ}C$) on the AT91EB40 Evaluation Board.

Table 2. Power Consumption

		V _{DD}		
Mode	Conditions	2.0V	3.3V	Unit
Reset		0.06	0.10	
Normal Idle	Fetch in ARM mode out of internal SRAM All peripheral clocks activated	1.38	4.63	
	Fetch in ARM mode out of internal SRAM All peripheral clocks deactivated	1.04	3.44	mW/MHz
	All peripheral clocks activated	0.61	2.06	
	All peripheral clocks deactivated	0.19	0.79	

Table 3. Power Consumption per Peripheral

	V _{DD}		
Peripheral	2.0V	3.3V	Unit
PIO Controller	0.01	0.16	
Timer/Counter Channel	0.01	0.15	mW/MHz
Timer/Counter Block (3 Channels)	0.02	0.35	
USART	0.03	0.40	

Thermal and Reliability Considerations

Thermal Data

In Table 4, the device lifetime is estimated with the MIL-217 standard in the "moderately controlled" environmental model (this model is described as corresponding to an installation in a permanent rack with adequate cooling air), depending on the device Junction Temperature. (For details see the section "Junction Temperature" on page 5.)

Note that the user must be extremely cautious with this MTBF calculation: as the MIL-217 model is pessimistic with respect to observed values due to the way the data/models are obtained (test under severe conditions). The life test results that have been measured are always better than the predicted ones.

Junction Temperature (T _J) (°C)	Estimated Lifetime (MTBF) (Year)
100	40
125	22
150	12
175	7

Table 5 summarizes the thermal resistance data related to the package of interest.

 Table 5.
 Thermal Resistance Data

Symbol	Parameter	Condition	Package	Тур	Unit
θ_{JA}	Junction-to-ambient thermal resistance	Still Air	TQFP100	40	°C/W
θ_{JC}	Junction-to-case thermal resistance		TQFP100	6.4	0/11

Reliability Data

The number of gates and the device die size are provided for the user to calculate reliability data with another standard and/or in another environmental model.

 Table 6.
 Reliability Data

Parameter	Data	Unit
Number of Logic Gates	272	K gates
Number of Memory Gates	400	K gates
Device Die Size	17.6	mm ²

Junction Temperature

The average chip-junction temperature T_J in °C can be obtained from the following:

1.
$$T_J = T_A + (P_D \times \theta_{JA})$$

2. $T_J = T_A + (P_D \times (\theta_{HEATSINK} + \theta_{JC}))$

Where:

- θ_{JA} = package thermal resistance, Junction-to-ambient (°C/W), provided in Table 5 on page 4.
- θ_{JC} = package thermal resistance, Junction-to-case thermal resistance (°C/W), provided in Table 5 on page 4.
- $\theta_{HEAT SINK}$ = cooling device thermal resistance (°C/W), provided in the device datasheet.
- P_D = device power consumption (W) estimated from data provided in the section "Power Consumption" on page 3.
- T_A = ambient temperature (°C).

From the first equation, the user can derive the estimated lifetime of the chip and thereby decide if a cooling device is necessary or not. If a cooling device is to be fitted on the chip, the second equation should be used to compute the resulting average chip-junction temperature T_{J} in °C.

Conditions

Timing Results

The delays are given as typical values in the following conditions:

- $V_{DD} = 3.3V$
- Ambient Temperature = 25°C
- Load Capacitance = 0 pF
- The output level change detection is 0.5 x V_{DD}
- The input level is $0.3 \times V_{DD}$ for a low-level detection and is $0.7 \times V_{DD}$ for a high level detection.

The minimum and maximum values given in the AC characteristics tables of this datasheet take into account the process variation and the design.

In order to obtain the timing for other conditions, the following equation should be used:

$$t = \delta_{T^{\circ}} \times \delta_{VDD} \times (t_{DATASHEET} + (C_{SIGNAL} \times \delta_{CSIGNAL}))$$

Where:

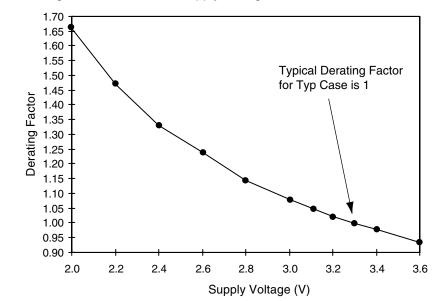
- $\delta_{T^{\circ}}$ is the derating factor in temperature given in Figure 1.
- δ_{VDD} is the derating factor for the Power Supply given in Figure 2.
- *t_{DATASHEET}* is the minimum or maximum timing value given in this datasheet for a load capacitance of 0 pF.
- C_{SIGNAL} is the capacitance load on the considered output pin.⁽¹⁾
- $\delta_{CSIGNAL}$ is the load derating factor depending on the capacitance load on the related output pins given in Min and Max values in this datasheet.

The input delays are given as typical values.

The input delays are given as typical value.

Note: 1. The user must take into account the package capacitance load contribution (C_{IN}) described in Table 1 on page 2.

Figure 1. Derating Curve for Different Operating Temperatures


1.3 1.2 Derating Factor 1.1 1 **Derating Factor for** 0.9 Typ Case is 1 0.8 -60 -40 -20 0 20 40 60 80 100 120 140 160

Operating Temperature (°C)

Temperature Derating Factor

Supply Voltage Derating Factor

Figure 2. Derating Curve for Different Supply Voltages

Note: This derating factor is applicable only to timings related to output pins.

Clock Waveforms

Table 7. Master Clock Waveform Parameters

Symbol	Parameter	Conditions	Min	Max	Units
1/(t _{CP})	Oscillator Frequency			47.7	MHz
t _{CP}	Oscillator Period		21.0		ns
t _{CH}	High Half-period		0.45 x t _{CP}	0.55 x t _{CP}	ns
t _{CL}	Low Half-period		0.45 x t _{CP}	0.55 x t _{CP}	ns
t _r	MCKI Rising Edge			TBD	ns
t _f	MCKI Falling Edge			TBD	ns

Table 8. Clock Propagation Times

Symbol	Parameter	Conditions	Min	Max	Units
t _{CDLH}	Rising Edge Propagation Time	C _{MCKO} = 0 pF	4.2	6.6	ns
		C _{MCKO} derating	0.034	0.053	ns/pF
t _{CDHL} Falling Edge Propagation	Falling Edge Drepogetion Time	C _{MCKO} = 0 pF	4.5	7.1	ns
	Falling Edge Propagation Time	C _{MCKO} derating	0.042	0.066	ns/pF

Figure 3. Clock Waveform

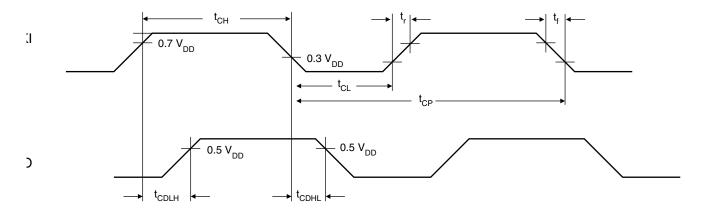
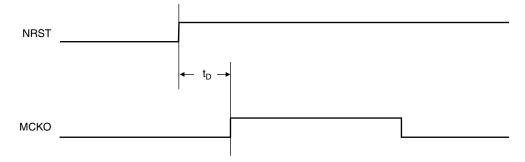



Table 9. NRST to MCKO

Symbol	Parameter	Min	Max	Units
t _D	NRST Rising Edge to MCKO Valid Time	3(t _{CP} /2)	7(t _{CP} /2)	ns

Figure 4. MCKO Relative to NRST

AC Characteristics

EBI Signals Relative to MCKI

The following tables show timings relative to operating condition limits defined in the section "Timing Results" on page 6. See Figure 3 on page 14.

Table 10. General-purpose EBI Signals

Symbol	Parameter	Conditions	Min	Max	Units
EBI ₁		C _{NUB} = 0 pF	5.4	11.7	ns
	MCKI Falling to NUB Valid	C _{NUB} derating	0.034	0.066	ns/pF
	MOKI Falling to NI D/AO Valid	C _{NLB} = 0 pF	4.3	8.7	ns
EBI ₂	MCKI Falling to NLB/A0 Valid	C _{NLB} derating	0.038	0.062	ns/pF
	MCKI Falling to A1 - A23 Valid	C _{ADD} = 0 pF	4.2	10.0	ns
EBI ₃		C _{ADD} = derating	0.038	0.066	ns/pF
	MCKI Falling to Chip Select Change	C _{NCS} = 0 pF	4.6	10.4	ns
EBI ₄		C _{NCS} derating	0.038	0.057	ns/pF
EBI ₅	NWAIT Setup before MCKI Rising		0.6		ns
EBI ₆	NWAIT Hold after MCKI Rising		3.2		ns

Table 11. EBI Write Signals

Symbol	Parameter	Conditions	Min	Max	Units
		C _{NWR} = 0 pF	4.3	7.1	ns
EBI ₇	MCKI Rising to NWR Active (No Wait States)	C _{NWR} derating	0.042	0.066	ns/pF
		C _{NWR} = 0 pF	5.0	8.2	ns
EBI ₈	MCKI Rising to NWR Active (Wait States)	C _{NWR} derating	0.042	0.066	ns/pF
		C _{NWR} = 0 pF	4.9	8.0	ns
EBI ₉	MCKI Falling to NWR Inactive (No Wait States)	C _{NWR} derating	0.034	0.053	ns/pF
		C _{NWR} = 0 pF	5.0	8.2	ns
EBI ₁₀	MCKI Rising to NWR Inactive (Wait States)	C _{NWR} derating	0.034	0.053	ns/pF
	MOKI Dising to D0 D15 Out Valid	C _{DATA} = 0 pF	4.1	8.6	ns
EBI ₁₁	MCKI Rising to D0 - D15 Out Valid	C _{DATA} derating	0	0.066	ns/pF
		C _{NUB} = 0 pF	3.3	7.6	ns
EBI ₁₂	NWR High to NUB Change	C _{NUB} derating	0.034	0.066	ns/pF
		$C_{NLB} = 0 \text{ pF}$	2.8	4.6	ns
EBI ₁₃	NWR High to NLB/A0 Change	C _{NLB} derating	0.042	0.066	ns/pF
		$C_{ADD} = 0 \text{ pF}$	2.7	6.5	ns
EBI ₁₄	NWR High to A1 - A23 Change	C _{ADD} derating	0.042	0.066	ns/pF
		C _{NCS} = 0 pF	3.2	6.4	ns
EBI ₁₅	NWR High to Chip Select Inactive	C _{NCS} derating	0.034	0.066	ns/pF
		C = 0 pF	t _{CH} - 0.9		ns
EBI ₁₆	Data Out Valid before NWR High (No Wait States) ⁽¹⁾	C _{DATA} derating	-0.066		ns/pF
		C _{NWR} derating	0.053		ns/pF
		C = 0 pF	n x t _{CP} - 0.8 ⁽²⁾		ns
EBI ₁₇	Data Out Valid before NWR High (Wait States) ⁽¹⁾	C _{DATA} derating	-0.066		ns/pF
		C _{NWR} derating	0.053		ns/pF
EBI ₁₈	Data Out Valid after NWR High		2.1		ns
		C _{NWR} = 0 pF	t _{CH} + 0.4		ns
EBI ₁₉	NWR Minimum Pulse Width (No Wait States) ⁽¹⁾	C _{NWR} derating	-0.013		ns/pF
		C _{NWR} = 0 pF	n x t _{CP} - 0.4 ⁽²⁾		ns
EBI ₂₀	NWR Minimum Pulse Width (Wait States) ⁽¹⁾	C _{NWR} derating	-0.013		ns/pF

Notes: 1. The derating factor should not be applied to t_{CH} or t_{CP} 2. n = number of standard wait states inserted.

Table 12. EBI Read Signals

Symbol	Parameter	Conditions	Min	Max	Units
		$C_{NRD} = 0 \text{ pF}$	5.0	9.0	ns
EBI ₂₁	MCKI Falling to NRD Active ⁽¹⁾	C _{NRD} derating	0.042	0.066	ns/pF
	MCKI Dising to NDD Active(2)	$C_{NRD} = 0 \text{ pF}$	4.1	8.6	ns
EBI ₂₂	MCKI Rising to NRD Active ⁽²⁾	C _{NRD} derating	0.042	0.066	ns/pF
		$C_{NRD} = 0 \text{ pF}$	5.2	9.4	ns
EBI ₂₃	MCKI Falling to NRD Inactive ⁽¹⁾	C _{NRD} derating	0.034	0.053	ns/pF
		$C_{NRD} = 0 \text{ pF}$	4.9	7.7	ns
EBI ₂₄	MCKI Falling to NRD Inactive ⁽²⁾	C _{NRD} derating	0.034	0.053	ns/pF
EBI ₂₅	D0 - D15 In Setup before MCKI Falling Edge ⁽⁵⁾		-0.3		ns
EBI ₂₆	D0 - D15 In Hold after MCKI Falling Edge ⁽⁵⁾		4.0		ns
	NRD High to NUB Change	C _{NUB} = 0 pF	4.1	8.4	ns
EBI ₂₇	Nithe High to NOB Change	C _{NUB} derating	0.034	0.066	ns/pF
		C _{NLB} = 0 pF	3.3	5.2	ns
EBI ₂₈	NRD High to NLB/A0 Change	C _{NLB} derating	0.042	0.066	ns/pF
	NDD Lligh to A1 A22 Change	C _{ADD} = 0 pF	3.2	7.1	ns
EBI ₂₉	NRD High to A1 - A23 Change	C _{ADD} derating	0.042	0.066	ns/pF
	NDD Llink to Chin Colort Incetive	C _{NCS} = 0 pF	3.6	6.9	ns
EBI ₃₀	NRD High to Chip Select Inactive	C _{NCS} derating	0.034	0.066	ns/pF
		$C_{NRD} = 0 \text{ pF}$	9.0		ns
EBI ₃₁	Data Setup before NRD High ⁽⁵⁾	C _{NRD} derating	0.053		ns/pF
		$C_{NRD} = 0 pF$	-2.4		ns
EBI ₃₂	Data Hold after NRD High ⁽⁵⁾	C _{NRD} derating	-0.034		ns/pF
		C _{NRD} = 0 pF	(n +1) t _{CP} - 0.7 ⁽⁴⁾		ns
EBI ₃₃	NRD Minimum Pulse Width ⁽¹⁾⁽³⁾	C _{NRD} derating	-0.013		ns/pF
		C _{NRD} = 0 pF	n x t _{CP} + (t _{CH} - 0.9) ⁽⁴⁾		ns
EBI ₃₄	NRD Minimum Pulse Width ⁽²⁾⁽³⁾	C _{NRD} derating	-0.013		ns/pF

Notes: 1. Early Read Protocol.

2. Standard Read Protocol.

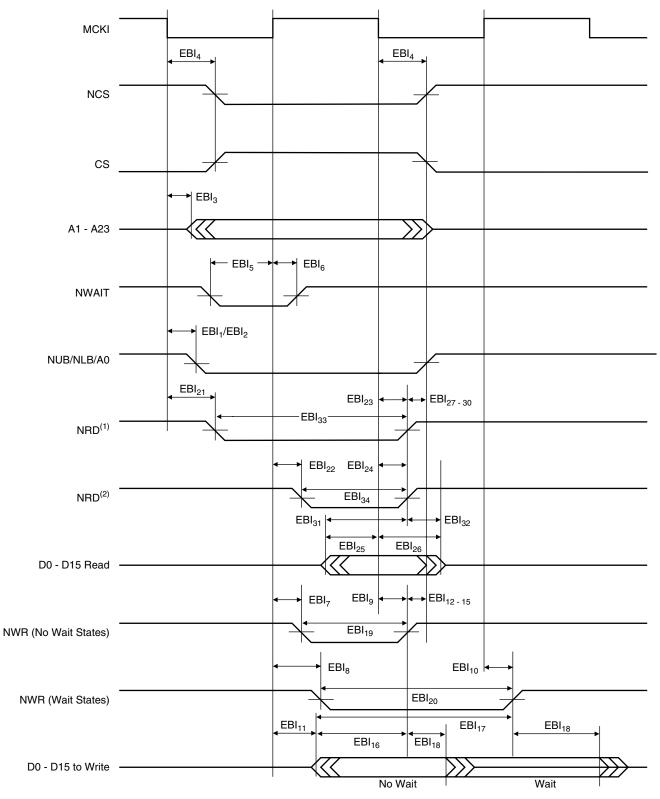
3. The derating factor should not be applied to t_{CH} or t_{CP}

4. n = number of standard wait states inserted.

5. Only one of these two timings needs to be met.

Table 13.	EBI Read and	Write Contro	l Signals, C	Capacitance Limitation	1
			i olgilalo. O	apaonanoo Emmanon	

Symbol	Parameter	Conditions	Min	Max	Units
T (1)		C _{NRD} = 0 pF	10.8		ns ns/pF ns
T _{CPLNRD} ⁽¹⁾	Master Clock Low Due to NRD Capacitance	C _{NRD} derating	0.053		ns/pF
T (2)	Master CLock Low Due to NWR Capacitance	$C_{NWR} = 0 \text{ pF}$	8.6		ns
T _{CPLNWR} ⁽²⁾		C _{NWR} derating	0.053		ns/pF


Notes: 1. If this condition is not met, the action depends on the read protocol intended for use.

Early Read Protocol: Programing an additional t_{DF} (Data Float Output Time) cycle.
Standard Read Protocol: Programming an additional t_{DF} Cycle and an additional wait state.
Applicable only for chip select programmed with 0 wait state. If this condition is not met, at least one wait state must be programmed.

3. EBI Signals Relative to MCKI

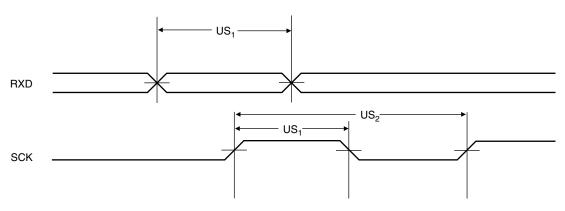
Notes: 1. Early Read Protocol.

2. Standard Read Protocol.

14 **AT91M40800**

Peripheral Signals

USART Signals The inputs have to meet the minimum pulse width and period constraints shown in Table 14 and Table 15, and represented in Figure 5.


Table 14. USART Input Minimum Pulse Width

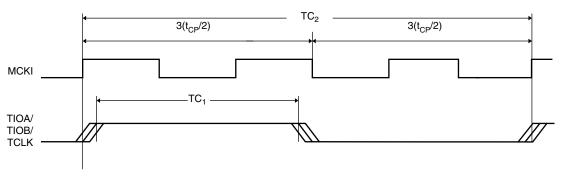
Symbol	Parameter	Min Pulse Width	Units
US ₁	SCK/RXD Minimum Pulse Width	5(t _{CP} /2)	ns

Table 15. USART Minimum Input Period

Symbol	Parameter	Min Input Period	Units
US ₂	SCK Minimum Input Period	9(t _{CP} /2)	ns

Figure 5. USART Signals

Timer/Counter Signals Due to internal synchronization of input signals, there is a delay between an input event and a corresponding output event. This delay is $3(t_{CP})$ in Waveform Event Detection mode and $4(t_{CP})$ in Waveform Total-count Detection mode. The inputs have to meet the minimum pulse width and minimum input period shown in Table 16 and Table 17, and as represented in Figure 6.

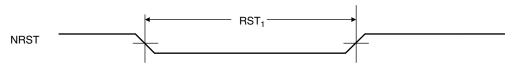

 Table 16.
 Timer Input Minimum Pulse Width

Symbol	Parameter	Min Pulse Width	Units
TC ₁	TCLK/TIOA/TIOB Minimum Pulse Width	3(t _{CP} /2)	ns

Table 17. Timer Input Minimum Period

Symbol	Parameter	Min Input Period	Units
TC ₂	TCLK/TIOA/TIOB Minimum Input Period	5(t _{CP} /2)	ns

Figure 6. Timer Input


Reset Signals

A minimum pulse width is necessary, as shown in Table 18 and as represented in Figure 7.

Table 18. Reset Minimum Pulse Width

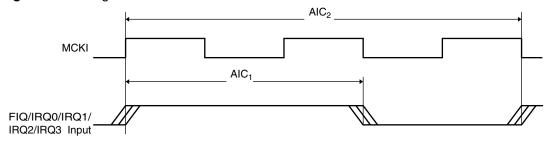
Symbol	Parameter	Min Pulse-width	Units
RST ₁	NRST Minimum Pulse Width	10(t _{CP})	ns

Figure 7. Reset Signal

Only the NRST rising edge is synchronized with MCKI. The falling edge is asynchronous.

Advanced Interrupt Controller Signals

Inputs have to meet the minimum pulse width and minimum input period shown in Table 19 and Table 20 and represented in Figure 8.

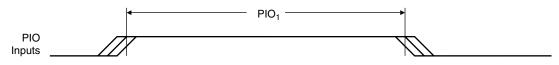

Table 19. AIC Input Minimum Pulse Width

Symbol	Parameter	Min Pulse Width	Units
AIC ₁	FIQ/IRQ0/IRQ1/IRQ2/IRQ3 Minimum Pulse Width	3(t _{CP} /2)	ns

Table 20. AIC Input Minimum Period

Symbol	Parameter	Min Input Period	Units
AIC ₂	AIC Minimum Input Period	5(t _{CP} /2)	ns

Figure 8. AIC Signals

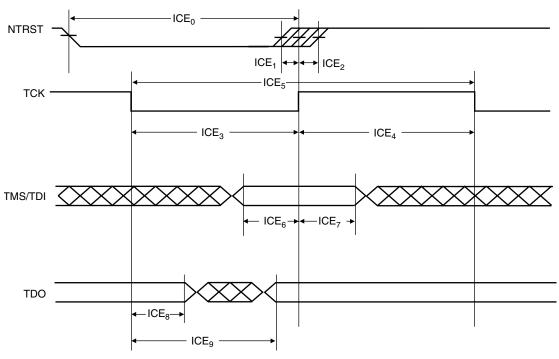

Parallel I/O Signals

The inputs have to meet the minimum pulse width shown in Table 21 and represented in Figure 9.

Table 21. PIO Input Minimum Pulse Width

Symbol	Parameter	Min Pulse Width	Units
PIO ₁	PIO Input Minimum Pulse Width	3(t _{CP} /2)	ns

Figure 9. PIO Signal



ICE Interface Signals

Table 22. ICE Interface Timing Specifications

Symbol	Parameter	Conditions	Min	Мах	Units
ICE ₀	NTRST Minimum Pulse Width		18.8		ns
ICE ₁	NTRST High Recovery to TCK High		1.2		ns
ICE ₂	NTRST High Removal from TCK High		-0.2		ns
ICE ₃	TCK Low Half-period		41.7		ns
ICE ₄	TCK High Half-period		40.9		ns
ICE ₅	TCK Period		82.5		ns
ICE ₆	TDI, TMS Setup before TCK High		0.5		ns
ICE ₇	TDI, TMS Hold after TCK High		0.6		ns
ICE ₈	TDO Hold Time	$C_{TDO} = 0 \text{ pF}$	5.2		ns
		C _{TDO} derating	0		ns/pF
ICE ₉	TCK Low to TDO Valid	$C_{TDO} = 0 \text{ pF}$		10.2	ns
		C _{TDO} derating		0.063	ns/pF

Figure 10. ICE Interface Signal

Document Details

Title	AT91M40800 Electrical Characteristics			
Literature Number	Lit# 1393B			
Revision History				
Version A	Publication Date: Sep, 2000			
Version B	Publication Date: 10, Dec, 2001			
Revisions Since Previous Version published on Intranet				
Page: 1	"Features" "Fully Static Operation: 0 Hz to 40 MHz Internal Frequency Range at 3.0 V, 85°C" frequency and range modified			
Page: 4	"Reliability Data" paragraph modified and new table inserted. "Table 6 Reliability Data"			
Page: 6	"Timing Results" Cross reference added to C _{SIGNAL} part of equation.			
Page: 8	Table 7. Master Clock Waveform Parameters. Values have been changed for Oscillator Frequency and Oscillator Period. Some master clock parameters deleted.			
Page: 10	Table 10. General-purpose EBI Signals. EBI ₄ , Conditions are changed.			
Page: 13	New table inserted. Table 13. Read and Write Control Signals. Capacitance Limitation. This table adds understanding to EBI Signals Relative to MCK.			

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel SarL Route des Arsenaux 41 Casa Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Atmel Asia, Ltd. Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

Atmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory Atmel Corporate 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 436-4270 FAX 1(408) 436-4314

Microcontrollers Atmel Corporate 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 436-4270 FAX 1(408) 436-4314

Atmel Nantes La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards Atmel Rousset Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

Atmel Colorado Springs 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

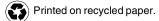
Atmel Smart Card ICs Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743 *RF/Automotive* Atmel Heilbronn Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

Atmel Colorado Springs 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Atmel Grenoble Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail literature@atmel.com

Web Site http://www.atmel.com


© Atmel Corporation 2001.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical

ATMEL® is the registered trademark of Atmel.

ARM[®], Thumb[®] and ARM Powered[®] are the registered trademarks of ARM Limited. ARM7TDMI[™] is the trademark of ARM Limited.

Other terms and product names may be the trademark of others.

