Data Sheet No. PD60046-S
Typical Connection
Product Summary
VOFFSET 600V max.
IO+/ - 130 mA / 270 mA
VOUT 10 - 20V
ton/off (typ.) 680 & 150 ns
Deadtime (typ.) 520 ns
HALF-BRIDGE DRIVER
Features
Floating channel designed for bootstrap operation
Fully operational to +600V
Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 10 to 20V
Undervoltage lockout
3.3V, 5V and 15V input logic compatible
Cross-conduction prevention logic
Internally set deadtime
High side output in phase with input
Shut down input turns off both channels
Matched propagation delay for both channels
Also available LEAD-FREE
Description
The IR2104(S) are high voltage, high speed power
MOSFET and IGBT drivers with dependent high and low
side referenced output channels. Proprietary HVIC and
latch immune CMOS technologies enable ruggedized
monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic.
The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The
floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which
operates from 10 to 600 volts.
www.irf.com 1
IR2104(S) & (PbF)
VCC VB
VS
HO
LOCOM
IN
SD
SD
IN
up to 600V
TO
LOAD
VCC
(Refer to Lead Assignment for correct pin configuration) This/These diagram(s) show electrical
connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
Packages
8 Lead PDIP
IR2104
8 Lead SOIC
IR2104S
2
IR2104(S) & (PbF)
www.irf.com
Symbol Definition Min. Max. Units
VBHigh side floating absolute voltage -0.3 625
VSHigh side floating supply offset voltage VB - 25 VB + 0.3
VHO High side floating output voltage VS - 0.3 VB + 0.3
VCC Low side and logic fixed supply voltage -0.3 25
VLO Low side output voltage -0.3 VCC + 0.3
VIN Logic input voltage (IN & SD) -0.3 VCC + 0.3
dVs/dt Allowable offset supply voltage transient 50 V/ns
PDPackage power dissipation @ TA +25°C (8 lead PDIP) 1.0
(8 lead SOIC) 0.625
RthJA Thermal resistance, junction to ambient (8 lead PDIP) 125
(8 lead SOIC) 200
TJJunction temperature 150
TSStorage temperature -55 150
TLLead temperature (soldering, 10 seconds) 300
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage
parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are
measured under board mounted and still air conditions.
Symbol Definition Min. Max. Units
VBHigh side floating supply absolute voltage VS + 10 VS + 20
VSHigh side floating supply offset voltage Note 1 600
VHO High side floating output voltage VSVB
VCC Low side and logic fixed supply voltage 10 20
VLO Low side output voltage 0 VCC
VIN Logic input voltage (IN & SD)0V
CC
TAAmbient temperature -40 125
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the
recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential.
°C
V
V
W
°C/W
°C
3
IR2104(S) & (PbF)
www.irf.com
Symbol Definition Min. Typ. Max. Units Test Conditions
VIH Logic “1” (HO) & Logic “0” (LO) input voltage 3 VCC = 10V to 20V
VIL Logic “0” (HO) & Logic “1” (LO) input voltage 0.8 VCC = 10V to 20V
VSD,TH+ SD input positive going threshold 3 VCC = 10V to 20V
VSD,TH- SD input negative going threshold 0.8 VCC = 10V to 20V
VOH High level output voltage, VBIAS - VO 100 IO = 0A
VOL Low level output voltage, VO 100 IO = 0A
ILK Offset supply leakage current 50 VB = VS = 600V
IQBS Quiescent VBS supply current 30 55 VIN = 0V or 5V
IQCC Quiescent VCC supply current 150 270 VIN = 0V or 5V
IIN+ Logic “1” input bias current 3 1 0 VIN = 5V
IIN- Logic “0” input bias current 1 VIN = 0V
VCCUV+ VCC supply undervoltage positive going 8 8.9 9.8
threshold
VCCUV- VCC supply undervoltage negative going 7.4 8.2 9
threshold
IO+ Output high short circuit pulsed current 130 210 VO = 0V
PW10 µs
IO- Output low short circuit pulsed current 270 360 VO = 15V
PW10 µs
Symbol Definition Min. Typ. Max. Units Test Conditions
ton Turn-on propagation delay 680 820 VS = 0V
toff Turn-off propagation delay 150 220 VS = 600V
tsd Shutdown propagation delay 16 0 220
trTurn-on rise time 100 170
tfTurn-off fall time 50 90
D T Deadtime, LS turn-off to HS turn-on & 400 520 650
HS turn-on to LS turn-off
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to
COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25°C unless otherwise specified.
V
mV
V
mA
M T Delay matching, HS & LS turn-on/off 60
ns
µA
4
IR2104(S) & (PbF)
www.irf.com
Functional Block Diagram
Lead Definitions
Symbol Description
IN Logic input for high and low side gate driver outputs (HO and LO), in phase with HO
Logic input for shutdown
VBHigh side floating supply
HO High side gate drive output
VSHigh side floating supply return
VCC Low side and logic fixed supply
LO Low side gate drive output
COM Low side return
SD
Lead Assignments
8 Lead PDIP 8 Lead SOIC
IR2104 IR2104S
1
2
3
4
8
7
6
5
VCC
IN
SD
COM
VB
HO
VS
LO
1
2
3
4
8
7
6
5
VCC
IN
SD
COM
VB
HO
VS
LO
VB
HO
VS
IN
SD
DEAD TIME &
SHOOT-THROUGH
PREVENTION
PULSE
GEN
PULSE
FILTER
HV
LEVEL
SHIFT R
S
Q
VCC
LO
COM
UV
DETECT
5
IR2104(S) & (PbF)
www.irf.com
Figure 5. Delay Matching Waveform Definitions
HO
50% 50%
10%
LO
90%
MT
HOLO
MT
IN(LO)
IN(HO)
Figure 4. Deadtime Waveform Definitions
IN
HO
50% 50%
90%
10%
LO 90%
10%
DT DT
Figure 3. Shutdown Waveform Definitions
SD
tsd
HO
LO
50%
90%
Figure 1. Input/Output Timing Diagram
SD
IN
HO
LO
Figure 2. Switching Time Waveform Definitions
IN(HO)
tr
ton tf
toff
LO
HO
50% 50%
90% 90%
10% 10%
IN(LO)
6
IR2104(S) & (PbF)
www.irf.com
Figure 6A. T urn-On Time vs T emperature Figure 6B. T urn-On Time vs Supply V oltage
Figure 7A. T urn-Off Time vs T emperature
Figure 7B. T urn-Off Time vs Supply V oltage
Temperature (°C) VBIAS Supply Voltage (V)
Temperature (°C)
VBIAS Supply Voltage (V)
Turn-Off Delay Time (ns)
0
100
200
300
400
500
10 12 14 16 18 20
Max.
Typ.
Turn-Off Delay Time (ns)
0
200
400
600
800
1000
1200
1400
-50 -25 0 25 50 75 100 125
T u rn -O n D e l ay Time (n s)
Max.
Typ.
Turn-On Delay Time (ns)
0
200
400
600
800
1000
1200
1400
10 12 14 16 18 20
Max.
Typ.
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Max.
Typ.
0
200
400
600
800
1000
0 2 4 6 8 101214161820
Turn-On Delay Time (ns
)
Max.
Typ.
0
200
400
600
800
1000
0 2 4 6 8 101214161820
Turn-Off Delay Time (ns
Max.
Typ
Figure 7C. Turn-Off Time vs Input Voltage
Figure 6C. Turn-On Time vs Input Voltage
Input Voltage (V)
Input Voltage (V)
7
IR2104(S) & (PbF)
www.irf.com
Figure 8A. Shutdown Time vs Temperature Figure 8B. Shutdown Time vs Voltage
VBIAS Supply Voltage (V)
Temperature (°C)
Shutdown Delay Time (ns)
0
100
200
300
400
500
10 12 14 16 18 20
Max.
Typ.
Shutdown Delay Time (ns)
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Typ.
M ax.
Figure 10A. Turn-Off Fall T ime
vs Temperature
Temperature (°C) VBIAS Supply Voltage (V)
Figure 10B. Turn-Off Fall Time vs Voltage
Turn-Off Fall Time (ns)
0
50
100
150
200
10 12 14 16 18 20
M ax.
Typ.
Turn-Off Fall Time (ns)
Figure 9A. Turn-On Rise T ime
vs Temperature Figure 9B. Turn-On Rise Time vs Voltage
Temperature (°C) VBIAS Supply Voltage (V)
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Max
.
Typ.
Turn-On Rise Time (ns)
0
100
200
300
400
500
10 12 14 16 18 20
Max.
Typ.
Turn-On Rise Time (ns)
0
50
100
150
200
-50-25 0 25 50 75100125
Max
.
Typ.
8
IR2104(S) & (PbF)
www.irf.com
Temperature (°C)
Figure 12A. Logic "1" (HO) & Logic “0” (LO)
& Inactive SD Input Voltage
vs Temperature
Figure 12B. Logic "1" (HO) & Logic “0” (LO)
& Inactive SD Input Voltage
vs Voltage
Figure 13A. Logic "0" (HO) & Logic “1” (LO)
& Active SD Input Voltage
vs Temperature
Temperature (°C) Vcc Supply Voltage (V)
Figure 13B. Logic "0" (HO) & Logic “1” (LO)
& Active SD Input Voltage
vs Voltage
Vcc Supply Voltage (V)
0
1
2
3
4
5
6
7
8
-50 -25 0 25 50 75 100 125
Input V olta g e (V )
Min.
0
0.8
1.6
2.4
3.2
4
10 12 14 16 18 20
Input V oltage ( V )
Max
.
0
1
2
3
4
5
6
7
8
10 12 14 16 18 20
Input V oltage ( V )
Min.
0
0.8
1.6
2.4
3.2
4
-50-250 255075100125
Input Voltage (V)
Max.
Temperature (°C) VBIAS Supply Voltage (V)
Deadtime (ns)
Figure 1 1A. Deadtime vs T emperature
Deadtime (ns)
Figure 1 1B. Deadtime vs V oltage
0
200
400
600
800
1000
1200
1400
-50 -25 0 25 50 75 100 125
Max.
Typ.
Min.
0
200
400
600
800
1000
1200
1400
10 12 14 16 18 20
M ax.
Typ.
Min.
9
IR2104(S) & (PbF)
www.irf.com
Temperature (°C) Vcc Supply Voltage (V)
Figure 14A. High Level Output
vs Temperature Figure 14B. High Level Output vs V oltage
0
0.2
0.4
0.6
0.8
1
10 12 14 16 18 20
M ax.
High Level Output Voltage (V)
0
0.2
0.4
0.6
0.8
1
-50 -25 0 25 50 75 100 125
Max.
High Level Output Voltage (V)
Figure 15A. Low Level Output
vs Temperature
Temperature (°C) Vcc Supply Voltage (V)
Figure 15B. Low level Output vs Voltage
Offset Supply Leakage Current (µA)
Temperature (°C)
Figure 16A. Offset Supply Current
vs Temperature
Low Level Output Voltage (V)
0
0.2
0.4
0.6
0.8
1
10 12 14 16 18 20
M ax.
Offset Supply Leakage Current (µA)
Figure 16B. Offset Supply Current
vs V oltage
0
0.2
0.4
0.6
0.8
1
-50-250 255075100125
Max.
Low Level Output Voltage (V)
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Max.
0
100
200
300
400
500
0 100 200 300 400 500 600
Max.
VB Boost Voltage (V)
10
IR2104(S) & (PbF)
www.irf.com
Figure 18A. Vcc Supply Current
vs Temperature
Vcc Supply Current (µA)
Vcc Supply Current (µA)
Figure 18B. Vcc Supply Current vs Voltage
Vcc Supply Voltage (V)
Figure 19A. Logic"1" Input Current
vs Temperature
Temperature (°C)
Logic 1” Input Current (µA)
Logic 1” Input Current (µA)
Figure 19B. Logic"1" Input Current
vs V oltage
0
100
200
300
400
500
600
700
10 12 14 16 18 20
Max.
Typ.
0
5
10
15
20
25
30
-50 -25 0 25 50 75 100 125
Max.
Typ.
0
5
10
15
20
25
30
10 12 14 16 18 20
Max.
Typ.
Vcc Supply Voltage (V)
0
100
200
300
400
500
600
700
-50-250 255075100125
Max.
Typ.
Temperature (°C)
Figure 17A. VBS Supply Current
vs Temperature Figure 17B. VBS Supply Current
vs V oltage
VBS Floating Supply Voltage (V)
Temperature (°C)
VBS Supply Current (µA)
VBS Supply Current (µA)
0
30
60
90
120
150
10 12 14 16 18 20
Max.
Typ.
0
30
60
90
120
150
-50 -25 0 25 50 75 100 125
Max.
Typ.
11
IR2104(S) & (PbF)
www.irf.com
Logic “0” Input Current (µA)
Figure 20A. Logic "0" Input Current
vs Temperature
Temperature (°C) VCC Supply Voltage (V)
Figure 20B. Logic "0" Input Current
vs V oltage
0
1
2
3
4
5
10 12 14 16 18 20
Logic "0" I nput Current (uA)
Max.
0
1
2
3
4
5
-50 -25 0 25 50 75 100 125
Max.
VCC UVLO Threshold +(V)
Figure 21A. Vcc Undervoltage Threshold(+)
vs Temperature
Temperature (°C)
Figure 21B. Vcc Undervoltage Threshold(-)
vs Temperature
VCC UVLO Threshold - (V)
Output Source Current (mA)
Figure 22A. Output Source Current
vs Temperature
Temperature (°C)
Figure 22B. Output Source Current
vs V oltage
Output Source Current (mA)
6
7
8
9
10
11
-50 -25 0 25 50 75 100 125
Max.
Min.
Typ.
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Typ.
Min.
6
7
8
9
10
11
-50 -25 0 25 50 75 100 125
Max.
Min.
Typ.
Temperature (°C)
0
100
200
300
400
500
10 12 14 16 18 20
Typ.
Min.
VBIAS Supply Voltage (V)
12
IR2104(S) & (PbF)
www.irf.com
Output Sink Current (mA)
Temperature (°C)
Figure 23A. Output Sink Current
vs Temperature Figure 23B. Output Sink Current vs Voltage
Output Sink Current (mA)
0
100
200
300
400
500
600
700
-50 -25 0 25 50 75 100 125
Typ.
Min.
0
100
200
300
400
500
600
700
10 12 14 16 18 20
Typ.
Min.
VBIAS Supply Voltage (V)
Case Outlines
01-6014
01-3003 01 (MS-001AB)
8 Lead PDIP
13
IR2104(S) & (PbF)
www.irf.com
01-6027
01-0021 11 (MS-012AA)
8 Lead SOIC
87
5
65
D B
E
A
e
6X
H
0. 25 [. 010 ] A
6
4312
4 . OUTLINE CONFORMS T O JED EC OUT L INE M S-0 1 2A A.
NOTES:
1. DI MENSI ONING & TOLERANCING PER ASME Y14.5M-1994.
2 . CONTR OLLING DIMENSION: MILLIMETER
3 . D IMENSIONS ARE SHOWN IN MILLIMET ERS [INCHES] .
7
K x 4 5 °
8X L 8X c
y
FOOTPRINT
8X 0.72 [ . 02 8]
6. 46 [ . 2 55]
3X 1.27 [ . 05 0] 8X 1.78 [ . 07 0]
5 D IMENSION D OES NOT INCLUDE MOLD PROTRUSIONS.
6 D IMENSION D OES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
7 D IMENSION IS T H E LENGT H OF LEAD FOR SOLD ERING TO
A SUBSTRATE.
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
0. 25 [. 010 ] CAB
e1 A
A1
8X b
C
0. 10 [. 004 ]
e1
D
E
y
b
A
A1
H
K
L
.189
.1497
.013
.050 BASIC
.0532
.0040
.2284
.0099
.016
.1968
.1574
.020
.0688
.0098
.2440
.0196
.050
4.80
3.80
0.33
1.35
0.10
5.80
0.25
0.40
1.27 BASIC
5.00
4.00
0.51
1.75
0.25
6.20
0.50
1.27
MIN MAX MILLIMETERSINC HES MIN MAX
DIM
e
c .0075 .0098 0.19 0.25
.025 BASIC 0.635 BASIC
14
IR2104(S) & (PbF)
www.irf.com
LEADFREE PART MARKING INFORMATION
ORDER INFORMATION
Lead Free Released
Non-Lead Free
Released
Part number
Date code
IRxxxxxx
YWW?
?XXXX
Pin 1
Identifier
IR logo
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
P
?MARKING CODE
Basic Part (Non-Lead Free)
8-Lead PDIP IR2104 order IR2104
8-Lead SOIC IR2104S order IR2104S
Leadfree Part
8-Lead PDIP IR2104 order IR2104PbF
8-Lead SOIC IR2104S order IR2104SPbF
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
This product has been qualified per industrial level
Data and specifications subject to change without notice. 4/2/2004