Standard Power MOSFETs IRF120, IRF121, IRF122, IRF123 File Number 1565 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 7.0A and 8.0A, 60V-100V ros(on) = 0.30 2 and 0.40 Features: SOA is power-dissipation limited @ Nanosecond switching speeds @ Linear transfer characteristics High input impedance @ Majority carrier device The IRF120, tRF121, IRF122 and IRF123 are n-channel enhancement-mode silicon-gate power field- effect transistors designed for applications such as switch- ing regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching tran- sistors requiring high speed and iow gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AA steel package. N-CHANNEL ENHANCEMENT MODE 6O- $s 92CS-33741 TERMINAL DIAGRAM TERMINAL DESIGNATION DRAIN SOURCE | (FLANGE ) , oO SATE 92S-37801 JEDEC TO-204AA Absolute Maximum Ratings Parameter (RE120 (RF 124 IRF 122 IRF 123 Units Vos Drain - Source Voltage @ 100 60 100 60 v Vocr Drain - Gate Voltage (Rag = 20KQ) 100 60 100 60 v ip @Tc = 25C Continuous Drain Current 8.0 8.0 7.0 7.0 A 1p @ Tc = 100C Continuous Drain Current 5.0 5.0 4.0 40 A tom Pulsed Drain Current @ 32 32 28 28 A Vos Gate - Source Voltage +20 v Pp @ Tc = 25C Max. Power Dissipation 40 {See Fig. 14) w Linear Derating Factor 0.32 (See Fig. 14) wee iM inductive Current, Clamped (See Fig. 15 and 16) L = 100pH A 32 I 32 il 28 | 28 Ty Operating Junction and _66 to 150 c Tstg Storage Temperature Range Lead Temperature 300 (0.063 in. (1.6mm) from case for 10s} C 3-54Electrical Characteri Standard Power MOSFETs IRF120, IRF121, IRF122, IRF123 ics @Tc = 25C (Unless Otherwise Specified) Parameter Type Min. | Typ. | Max. Units Test Conditions 8Vpss_ Drain - Source Breakdown Voltage IRF 120 100 _ _ Vv Vgg = OV (RF 122 IRF 121 _ mpiza | | - | - v 'p = 260uA Vasith) Gate Threshold Voltage ALI. 2.0 - [ 40 v Vos = Vas: 'p = 26044 Iggs __Gate-Source Leakage Forward ALL = 100 oA Vos = 20V less Gate-Source Leakage Reverse ALL. _ -100 oA Vgs = -20V Ipss Zero Gate Voltage Drain Current A ~ | 250 pA Vps = Max. Rating, Vgg = OV th = = | 1000 [ ya Vps_= Max. Rating x 0.8, Vgg = OV. Tc = 125C (pion) On-State Drain Current @ IRF120 | gg _ A (RF121 Vos ? 'pioni * Rosiont max. Yas = 10 wRF122 [| 74 _ _ A IRF 123 7 Rpsion) Static Drain-Source On-State IRF 120 _ Resistance IREH21 0.25] 0.30 | 2 Vee = 10V. in 4.08 InF122 | _ Jo.s0|o40| 2 ese IRF123. . Ofs Forward Transconductance @) ALL 15 | 29 [ - $ Ww) Vos? !oion) * Rpston) max. 'p = 4.04 Cigg___!oput Capacita ALL = 1450 | _ | oF Vas = OV. Vpg = 28V, f = 1.0 MHz Coss Output Capacitance ALL = 200 _ pF See Fig. 10 Cres Reverse Transfer Capacitance ALL - 50 > pF tafon}__Turn-On Delay Time ALL = 20 [ 40 ns Vpp = 0-5 BVpgg. Ip = 4.0A, Z, = 508 t Rise Time ALL = 35 70 ns See Fig. 17 tgfoff) _ Turn-Off Delay Time ALL - 50 100 ns {MOSFET switching times are essentially Yt Fall Time ALL 35 70 nS independent of operating temperature.) Q, Total Gate Charge Vv = 10V, I, = 10A, Ving = 0.8 Max. Rating. 9 _ Cc GS D DS. (Gate-Source Plus Gate-Drain) ALL '0 1s See Fig. 18 for test circuit. (Gate charge is essentially Ogs Gate-Source Charge ALL - 6.0 90 nc independent of operating temperature.) Qa Gate-Drain ("Miller") Charge ALL ~ 4.0 6.0 nc lp Internal Drain Inductance ALL ~ 5.0 = oH Measured between Modified MOSFET the contact screw on symbol showing the header that is closer to internal device source and gate pins inductances. and center of die. o LD ts internal Source Inductance ALL - 12.5 = nH Measured from the source pin, 6mm (0.25 in.) fram header G Ls and source bonding pad. s Thermal Resistance Rinse Junction-to-Case ALL 5 ~ | 3.12 | c7w Rincs _Case-to-Sink ALL = 0.1 = C/iw Mounting surface flat, smooth, and greased. Rina Junction-to-Ambient ALL - = 30 C/W Free Air Operation Source-Drain Diode Ratings and Characteristics Is Continuous Source Current (RF 120 _ _ 8.0 A Modified MOSFET symbol (Body Diode} IRF121 . showing the integral IRF122 reverse P-N junction rectifier. o mpi2a | ~ | ~ | 70] A ism Pulse Source Current IRFt20 - (Body Diode! @ inev21 | 32 A s IRF122 s IRF+23 28 A Vgp Diode Forward Voltage (RF 20 . - = IRF 121 - - | 25 v Te = 25C, Ig = 8.0A, Vgg = OV tRF122 i" _ . iRFi23 | - | 23 v Te = 25C, Ig = 7.0A, Vgg = OV tr Reverse Recovery Time ALL _ 280 ~ as Ty = 180C, Ip = 8.0A, dip/dt = 100A/us Opp _ Reverse Recovered Charge ALL ~ 1.6 = ac Ty = 150C, Ip = B.0A, dig/dt = 100A/us ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp. OTy = 25C ta 150C. @Pulse Test: Puise width 300ps, Duty Cycle < 2%. @ Repetitive Rati : Pulse width limited by max. junction temperature. See Transient Tharmal impedance Curve (Fig. 5). 3-55Standard Power MOSFETs IRF120, IRF121, IRF122, IRF123 ps PULSE TEST. Vos > 'D(an) * Roston) max. ip, OAAIN CURRENT (AMPERES) tp, GRAIN CURRENT (AMPERES) Qo 10 20 30 40 50 a 2 4 6 6 10 Vps. ORAIN-TO-SOUACE VOLTAGE (VOLTS) Vgs, GATE-TO-SQUACE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics 100 OPERATION IN THIS AREA IS LIMITED 8Y Roston) PULSE TEST. 20 g F z = 10 1 & 2 : = = Z 5 yar v22.3 = . : & t = j 5 = 2 ti 3 3 + z z z = = =" | } E 5. Tr = 25C ~ OST 7) = 150C MAX 312Csw 1 1 O.2;--SINGLE PULSE + IReI21.3 IRF120, 0.1 Q 1 2 3 4 5 O02 5 1 20 50 Vos. ORAIN-TO-SGURCE VOLTAGE (VOLTS) Vg. DRAIN-TO- SOURCE VOLTAGE (VBLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Area 01 7 ZenscltV Reng, NORMALIZED EFFECTIVE TRANSIENT THERMAL IMPEDANCE {PER UNIT} 0.05 1. OUTY FACTOR, O= + SINGLE PULSE (TRANSIENT - 0.02 THERMAL 2. PER UNIT BASE = Renjc = 3.12 DEG. CW. 3. Tym - Te = Pom 2rnic!t 0.01 52 5 (4 5 ws 2 5 we 2 5 wt 2 5 19 2 5g ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maxi Effective Transi Thermal d , Junction-to-Case Vs. Pulse Duration 3-56Standard Power MOSFETs IRF120, IRF121, IRF122, IRF123 3 ~ om Ty= 16090 3S N wo fits, TRANSCONOUCTANCE (SIEMENS) Vos > x Boston} max. 80 us PULSE TEST Ipp, REVERSE OAAIN CURRENT (AMPERES) Ty= 268C 1.0 a 4 8 ard 16 20 0 i 2 3 4 Ip. DRAIN CURRENT (AMPERES) Vgp. SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 6 Typical Transconductance Vs. Drain Current Fig. 7 Typical Source-Drain Diode Forward Voltage 15 22 115 & z N-TO-SOURCE ON RESISTANCE {NORMALIZED} 2 e a = 0.65 06 8Vogs, DRAIN-TO-SOURCE BREAKOOWN VOLTAGE (NORMALIZED) Rosion). ORAL O78 at a 40 60 120 160 -40 Qo 4g 80 120 Ty, JUNCTION TEMPERATURE (C) Ty, JUNCTION TEMPERATURE (C) Fig. 8 Breakdown Voltage Vs. Temperature Fig. 9 Normalized On-Resistance Vs. Temperature Vgs 78 f= 1 MHz 1 ' 800 Cigs = Cge + Cog, Cos SHORTED Gras * Cgg Cast Cs | Vps = 20V Vos = 50V Vpg = 80V, IRF120, C, CAPACITANCE (pF) Vgg. GATE-TO-SQUACE VOLTAGE (VOLTS) Ips FOR TEST CIRCUIT SEE FIGURE 18 9 0 20 * 40 50 0 4 8 2 16 20 Vps. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Q,, TOTAL GATE CHARGE (aC) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 3-57Standard Power MOSFETs IRF120, IRF121, IRF122, IRF123 os O6 o4 Vgsg = 20V 02 gs Royston) ORAIN-TO-SOURCE ON RESISTANCE (OHMS) Boston) PULSE OF 2.0 zs OURATION. INITIAL Ty = 25C. (HEATING EFFECT OF 2.0 us 1S MINIMAL} 0 10 20 30 to, DRAIN CURRENT {AMPERES} 40 Fig. 12 Typical On-Resistance Vs. Drain Current oo] a5 Pcp, POWER DISSIPATION (WATTS) 3 0 20 ac 60 Ip, QRAIN CURRENT (AMPERES) 0 3 50 15 100 125 180 Te, CASE TEMPERATURE (C) Fig. 13 Maximum Drain Current Vs. Case Temperature 80 100 120 140 Tp. CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve VARY t, TO OBTAIN REQUIRED PEAK I E, = 058Vpg5 FH Ve = 0.75BVps5 Fig. 15 Clamped Inductive Test Circuit ADJUST RL OEY TO OBTAIN SPECIFIED Ip > Ry Vi PULSE 9 GENERATOR r | i TO SCOPE O.01s2 1 HIGH FREQUENCY LL SHUNT Fig. 17 Switching Time Test Circuit 3-58, Fig. 16 Clamped inductive Waveforms Vos CURRENT USOLATED REGULATOR SUPPLY) SAME TYPE AS DUT Vos ig 7 10 CURRENT = CURRENT SHUNT SHUNT Fig. 18 Gate Charge Test Circuit