© Semiconductor Components Industries, LLC, 2006
July, 2006 − Rev. 10 1Publication Order Number:
MC33501/D
MC33501, MC33503
1.0 V, Rail−to−Rail, Single
Operational Amplifiers
The MC33501/503 operational amplifier provides rail−to−rail
operation on both the input and output. The output can swing within 50
mV of each rail. This rail−to−rail operation enables the user to make
full use of the entire supply voltage range available. It is designed to
work at very low supply voltages (1.0 V and ground), yet can operate
with a supply of up to 7.0 V and ground. Output current boosting
techniques provide high output current capability while keeping the
drain current of the amplifier to a minimum.
Features
Low Voltage, Single Supply Operation (1.0 V and Ground to 7.0 V
and Ground)
High Input Impedance: Typically 40 fA Input Bias Current
Typical Unity Gain Bandwidth @ 5.0 V = 4.0 MHz,
@ 1.0 V = 3.0 MHz
High Output Current (ISC = 40 mA @ 5.0 V, 13 mA @ 1.0 V)
Output Voltage Swings within 50 mV of Both Rails @ 1.0 V
Input Voltage Range Includes Both Supply Rails
High Voltage Gain: 100 dB Typical @ 1.0 V
No Phase Reversal on the Output for Over−Driven Input Signals
Typical Input Offset of 0.5 mV
Low Supply Current (ID = 1.2 mA/per Amplifier, Typical)
600 W Drive Capability
Extended Operating Temperature Range (−40 to 105°C)
Pb−Free Packages are Available
Applications
Single Cell NiCd/Ni MH Powered Systems
Interface to DSP
Portable Communication Devices
Low Voltage Active Filters
Telephone Circuits
Instrumentation Amplifiers
Audio Applications
Power Supply Monitor and Control
Transistor Count: 98
SOT23−5
SN SUFFIX
CASE 483
MARKING
DIAGRAM
1
5
Device Package Shipping
ORDERING INFORMATION
MC33501SNT1 SOT23−5 3000 Tape & Ree
l
MC33503SNT1 SOT23−5 3000 Tape & Ree
l
MC33501
MC33503
15
2
34
Non−Inverting
Input
Output
VCC
VEE
Inverting Input
(Top View)
+−
15
2
34
Non−Inverting
Input
Output
VEE
VCC
Inverting Input
(Top View)
+−
PIN CONNECTIONS
http://onsemi.com
MC33501SNT1G SOT23−5
(Pb−Free) 3000 Tape & Ree
l
MC33503SNT1G SOT23−5
(Pb−Free) 3000 Tape & Ree
l
For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specification
s
Brochure, BRD8011/D.
1
5
xxx AYWG
G
xxx = AAA; MC33501
AAB; MC33503
A = Assembly Location
Y = Year
WW = Work Week
G= Pb−Free Package
(Note: Microdot may be in either location)
MC33501, MC33503
http://onsemi.com
2
Figure 1. Simplified Block Diagram
This device contains 98 active transistors per amplifier.
Inputs Input
Stage Outputs
Buffer with 0 V
Level Shift
Saturation
Detector
Offset
Voltage
Trim
Base
Current
Boost
Base
Current
Boost
Output
Stage
MAXIMUM RATINGS
Rating Symbol Value Unit
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Supply Voltage (VCC to VEE)
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VS
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
7.0
ÁÁÁ
ÁÁÁ
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ESD Protection Voltage at any Pin
Human Body Model
ÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁ
VESD
ÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁ
2000
ÁÁÁ
Á
Á
Á
ÁÁÁ
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Voltage at Any Device Pin
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VDP
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VS ±0.3
ÁÁÁ
ÁÁÁ
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Input Dif ferential Voltage Range
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VIDR
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VCC to VEE
ÁÁÁ
ÁÁÁ
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Common Mode Input Voltage Range
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VCM
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VCC to VEE
ÁÁÁ
ÁÁÁ
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Output Short Circuit Duration
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
tS
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Note 1
ÁÁÁ
ÁÁÁ
s
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Maximum Junction Temperature
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
TJ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
150
ÁÁÁ
ÁÁÁ
°C
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Storage Temperature Range
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Tstg
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
−65 to 150
ÁÁÁ
ÁÁÁ
°C
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Maximum Power Dissipation
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
PD
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Note 1
ÁÁÁ
ÁÁÁ
mW
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended O p e r a t i n g Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded.
2. ESD data available upon request.
MC33501, MC33503
http://onsemi.com
3
DC ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = 0 V, VCM = VO = VCC/2, RL to VCC/2, TA = 25°C, unless
otherwise noted.)
Characteristic Symbol Min Typ Max Unit
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Input Offset Voltage (VCM = 0 to VCC)
ÁÁÁÁÁ
ÁÁÁÁÁ
VIO
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
mV
VCC = 1.0 V
TA = 25°C −5.0 0.5 5.0
TA = −40° to 105°C −7.0 7.0
VCC = 3.0 V
TA = 25°C −5.0 0.5 5.0
TA = −40° to 105°C −7.0 7.0
VCC = 5.0 V
TA = 25°C −5.0 0.5 5.0
TA = −40° to 105°C −7.0 7.0
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Input Offset Voltage Temperature Coefficient (RS = 50 W)
ÁÁÁÁÁ
ÁÁÁÁÁ
DVIO/DT
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
8.0
ÁÁÁÁ
ÁÁÁÁ
mV/°C
TA = −40° to 105°C
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Input Bias Current (VCC = 1.0 to 5.0 V)
ÁÁÁÁÁ
ÁÁÁÁÁ
I IIB I
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
0.00004
ÁÁÁÁ
ÁÁÁÁ
1.0
nA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Common Mode Input Voltage Range
ÁÁÁÁÁ
ÁÁÁÁÁ
VICR
ÁÁÁÁ
ÁÁÁÁ
VEE
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
VCC
V
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Large Signal Voltage Gain
ÁÁÁÁÁ
ÁÁÁÁÁ
AVOL
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
kV/V
VCC = 1.0 V (TA = 25°C)
RL = 10 kW25 100
RL = 1.0 kW5.0 50
VCC = 3.0 V (TA = 25°C)
RL = 10 kW50 500
RL = 1.0 kW25 100
VCC = 5.0 V (TA = 25°C)
RL = 10 kW50 500
RL = 1.0 kW25 200
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Output Voltage Swing, High (VID = ±0.2 V)
ÁÁÁÁÁ
VOH
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
V
VCC = 1.0 V (TA = 25°C)
RL = 10 kW0.9 0.95
RL = 600 W0.85 0.88
VCC = 1.0 V (TA = −40° to 105°C)
RL = 10 kW0.85
RL = 600 W0.8
VCC = 3.0 V (TA = 25°C)
RL = 10 kW2.9 2.93
RL = 600 W2.8 2.84
VCC = 3.0 V (TA = −40° to 105°C)
RL = 10 kW2.85
RL = 600 W2.75
VCC = 5.0 V (TA = 25°C)
RL = 10 kW4.9 4.92
RL = 600 W4.75 4.81
VCC = 5.0 V (TA = −40° to 105°C)
RL = 10 kW4.85
RL = 600 W4.7
MC33501, MC33503
http://onsemi.com
4
DC ELECTRICAL CHARACTERISTICS (continued) (VCC = 5.0 V, VEE = 0 V, VCM = VO = VCC/2, RL to VCC/2, TA = 25°C, unless
otherwise noted.)
Characteristic UnitMaxTypMinSymbol
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Output Voltage Swing, Low (VID = ±0.2 V)
ÁÁÁÁÁ
ÁÁÁÁÁ
VOL
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
V
VCC = 1.0 V (TA = 25°C)
RL = 10 kW0.05 0.02
RL = 600 W0.1 0.05
VCC = 1.0 V (TA = −40° to 105°C)
RL = 10 kW0.1
RL = 600 W0.15
VCC = 3.0 V (TA = 25°C)
RL = 10 kW0.05 0.02
RL = 600 W0.1 0.08
VCC = 3.0 V (TA = −40° to 105°C)
RL = 10 kW0.1
RL = 600 W0.15
VCC = 5.0 V (TA = 25°C)
RL = 10 kW0.05 0.02
RL = 600 W0.15 0.1
VCC = 5.0 V (TA = −40° to 105°C)
RL = 10 kW0.1
RL = 600 W0.2
Common Mode Rejection (Vin = 0 to 5.0 V) CMR 60 75 dB
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Power Supply Rejection
ÁÁÁÁÁ
ÁÁÁÁÁ
PSR
ÁÁÁÁ
ÁÁÁÁ
60
ÁÁÁÁ
ÁÁÁÁ
75
ÁÁÁÁ
ÁÁÁÁ
dB
VCC/VEE = 5.0 V/Ground to 3.0 V/Ground
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Output Short Circuit Current (Vin Diff = ±1.0 V)
ÁÁÁÁÁ
ISC
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
mA
VCC = 1.0 V
Source 6.0 13 26
Sink 10 13 26
VCC = 3.0 V
Source 15 32 60
Sink 40 64 140
VCC = 5.0 V
Source 20 40 140
Sink 40 70 140
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Power Supply Current (Per Amplifier, VO = 0 V)
ÁÁÁÁÁ
ID
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
mA
VCC = 1.0 V 1.2 1.75
VCC = 3.0 V 1.5 2.0
VCC = 5.0 V 1.65 2.25
VCC = 1.0 V (TA = −40 to 105°C) 2.0
VCC = 3.0 V (TA = −40 to 105°C) 2.25
VCC = 5.0 V (TA = −40 to 105°C) 2.5
MC33501, MC33503
http://onsemi.com
5
AC ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = 0 V, VCM = VO = VCC/2, TA = 25°C, unless otherwise noted.)
Characteristic Symbol Min Typ Max Unit
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Slew Rate (VS = ±2.5 V, VO = −2.0 to 2.0 V, RL = 2.0 kW, AV = 1.0)
ÁÁÁÁÁ
ÁÁÁÁÁ
SR
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
V/ms
Positive Slope 1.8 3.0 6.0
Negative Slope 1.8 3.0 6.0
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Gain Bandwidth Product (f = 100 kHz)
ÁÁÁÁÁ
ÁÁÁÁÁ
GBW
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
MHz
VCC = 0.5 V, VEE = −0.5 V 2.0 3.0 6.0
VCC = 1.5 V, VEE = −1.5 V 2.5 3.5 7.0
VCC = 2.5 V, VEE = −2.5 V 3.0 4.0 8.0
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Gain Margin (RL =10 kW, CL = 0 pF)
ÁÁÁÁÁ
ÁÁÁÁÁ
Am
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
6.5
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
dB
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Phase Margin (RL = 10 kW, CL = 0 pF)
ÁÁÁÁÁ
ÁÁÁÁÁ
fm
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
60
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
Deg
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Channel Separation (f = 1.0 Hz to 20 kHz, RL = 600 W)
ÁÁÁÁÁ
ÁÁÁÁÁ
CS
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
120
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
dB
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Power Bandwidth (VO = 4.0 Vpp, RL = 1.0 kW, THD 1.0%)
ÁÁÁÁÁ
ÁÁÁÁÁ
BWP
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
200
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
kHz
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Total Harmonic Distortion (VO = 4.5 Vpp, RL = 600 W, AV = 1.0)
ÁÁÁÁÁ
ÁÁÁÁÁ
THD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
%
f = 1.0 kHz 0.004
f = 10 kHz 0.01
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Differential Input Resistance (VCM = 0 V)
ÁÁÁÁÁ
ÁÁÁÁÁ
Rin
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
>1.0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
terraW
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Differential Input Capacitance (VCM = 0 V)
ÁÁÁÁÁ
ÁÁÁÁÁ
Cin
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
2.0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
pF
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Equivalent Input Noise Voltage (VCC = 1.0 V, VCM = 0 V, VEE = GND,
ÁÁÁÁÁ
ÁÁÁÁÁ
en
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
nV/Hz
RS = 100 W)
f = 1.0 kHz 30
Figure 2. Representative Block Diagram
Offset
Voltage
Trim
Output
Voltage
Saturation
Detector
Body
Bias
Clamp
VCC VCC
VCC
VCC
IN−
Out
IN+
MC33501, MC33503
http://onsemi.com
6
General Information
The MC33501/503 dual operational amplifier is unique in
its ability to provide 1.0 V rail−to−rail performance on both
the input and output by using a SMARTMOSt process. The
amplifier output swings within 50 mV of both rails and is
able to provide 50 mA of output drive current with a 5.0 V
supply, and 10 mA with a 1.0 V supply. A 5.0 MHz
bandwidth and a slew rate of 3.0 V/ms is achieved with high
speed depletion mode NMOS (DNMOS) and vertical PNP
transistors. This device is characterized over a temperature
range of −40°C to 105°C.
Circuit Information
Input Stage
One volt rail−to−rail performance is achieved in the
MC33501/503 a t the input by using a single pair of depletion
mode NMOS devices (DNMOS) to form a differential
amplifier with a very low input current of 40 fA. The normal
input common mode range of a DNMOS device, with an ion
implanted negative threshold, includes ground and relies on
the body effect to dynamically shift the threshold to a
positive value as the gates are moved from ground towards
the positive supply. Because the device is manufactured in
a p−well process, the body effect coefficient is sufficiently
large to ensure that the input stage will remain substantially
saturated when the inputs are at the positive rail. This also
applies at very low supply voltages. The 1.0 V rail−to−rail
input stage consists of a DNMOS differential amplifier, a
folded cascode, and a low voltage balanced mirror. The low
voltage cascaded balanced mirror provides high 1st stage
gain and base current cancellation without sacrificing signal
integrity. A common mode feedback path is also employed
to enable the offset voltage to track over the input common
mode voltage. The total operational amplifier quiescent
current drop is 1.3 mA/amp.
Output Stage
An additional feature of this device is an “on demand”
base current cancellation amplifier. This feature provides
base drive to the output power devices by making use of a
buffer amplifier to perform a voltage−to−current
conversion. This is done in direct proportion to the load
conditions. This “on demand” feature allows these
amplifiers to consume only a few micro−amps of current
when the output stage is in its quiescent mode. Yet it
provides high output current when required by the load. Th e
rail−to−rail output stage current boost circuit provides
50 mA of output current with a 5.0 V supply (For a 1.0 V
supply output stage will do 10 mA) enabling the operational
amplifier to drive a 600 W load. A buffer is necessary to
isolate the load current effects in the output stage from the
input stage. Because of the low voltage conditions, a
DNMOS follower is used to provide an essentially zero
voltage level shift. This buffer isolates any load current
changes on the output stage from loading the input stage. A
high speed vertical PNP transistor provides excellent
frequency performance while sourcing current. The
operational amplifier is also internally compensated to
provide a phase margin of 60 degrees. It has a unity gain of
5.0 MHz with a 5.0 V supply and 4.0 MHz with a 1.0 V
supply.
Low Voltage Operation
The MC33501/503 will operate at supply voltages from
0.9 to 7.0 V and ground. When using the MC33501/503 at
supply voltages of less than 1.2 V, input offset v oltage may
increase slightly as the input signal swings within
approximately 5 0 m V o f t he p ositive s upply r ail. This ef fect
occurs only for supply voltages below 1.2 V, due to the input
depletion mode MOSFETs starting to transition between the
saturated to linear region, and should be considered when
designing high side dc sensing applications operating at the
positive supply rail. Since the device is rail−to−rail on both
input and output, high dynamic range single battery cell
applications are now possible.
MC33501, MC33503
http://onsemi.com
7
20 mV/DIV
0
1000
100
0
t, TIME (1.0 ms/DIV)t, TIME (500 ms/DIV)
TA, AMBIENT TEMPERATURE (°C)
Figure 3. Output Saturation
versus Load Resistance
RL, LOAD RESISTANCE (W)
VCC = 0.5 V
VEE = −0.5 V
ACL = 1.0
CL = 10 pF
RL = 10 k
TA = 25°C
VCC = 2.5 V
VEE = −2.5 V
ACL = 1.0
CL = 10 pF
RL = 600 W
TA = 25°C
VCC
100
200
10
400
1.0
600
0.1
600
0.01
400
0.001
200
01.0 k
25
10 k
50
100 k
75
1.0 M
100
10 M
125
VEE
VCC = 5.0 V
VEE = 0 V
RL to VCC/2
Figure 4. Drive Output Source/Sink Saturation
Voltage versus Load Current
Source
Saturation
TA = −55°C
IO, OUTPUT CURRENT (mA)
VCC
VEE
TA = 25°C
TA = 125°C
Sink
Saturation TA = 125°C
TA = 25°C
TA = −55°C
VCC − VEE = 5.0 V
0
−0.5
−1.0
1.0
0.5
08.00 4.0 12 16 20 24
Figure 5. Input Current versus Temperature Figure 6. Gain and Phase versus Frequency
Figure 7. Transient Response Figure 8. Slew Rate
Vsat, OUTPUT SATURATION VOLTAGE (mV)
Vsat, OUTPUT SATURATION VOLTAGE (V)
AVOL, GAIN (dB)
IIB, INPUT CURRENT (pA)
1.0 V/DIV (mV)
1.0
100
f, FREQUENCY (Hz)
VCC = 2.5 V
VEE = −2.5 V
RL = 10 k
Phase
Gain
Phase Margin = 60°
φm, EXCESS PHASE (DEGREES)
0
80
60
45
40
90
180
135
20
010 100 1.0 k 10 k 100 k 1.0 M 10 M
MC33501, MC33503
http://onsemi.com
8
f, FREQUENCY (Hz)
100
0
1.0
2.0
3.0
8.0
4.0
5.0
1.0 k 10 k 100 k 1.0 M
VCC = 2.5 V
VEE = −2.5 V
AV = 1.0
RL = 600 W
TA = 25°C
10
6.0
7.0
−55 −25 0 25 50 75 100 125
TA, AMBIENT TEMPERATURE (°C)
Figure 9. Maximum Power Dissipation
versus Temperature
0
200
400
600
800
1000
1200
1400
1600
DIP Pkg
SO−8 Pkg
Figure 10. Open Loop Voltage Gain
versus Temperature
f, FREQUENCY (Hz)
100 1.0 k 10 k 100 k10
20
60
80
120
40
100
0
0 0.5 1.0 1.5 2.0 2.5
0
20
40
60
80
100
Source
Sink
|VS| − |VO| (V)f, FREQUENCY (Hz)
100 1.0 k 10 k10 100 k
PSR, POWER SUPPLY REJECTION (dB)
1.0 M
VCC = 2.5 V
VEE = −2.5 V
TA = 25°C
CMR, COMMON MODE REJECTION (dB)
−55 −25 50 75 100 125
TA, AMBIENT TEMPERATURE (°C)
025
120
110
100
90
80
70
60
50
40
30
20
ΔAVOL, OPEN LOOP GAIN (dB)
VCC = 2.5 V
VEE = −2.5 V
RL = 600 W
VCC = 2.5 V
VEE = −2.5 V
TA = 25°C
Figure 11. Output Voltage versus Frequency Figure 12. Common Mode Rejection
versus Frequency
Figure 13. Power Supply Rejection
versus Frequency Figure 14. Output Short Circuit Current
versus Output Voltage
0
40
60
100
20
80
120
140
Either VCC or VEE
TA = 25°C
VCC = 0.5 V
VEE = −0.5 V
VCC = 2.5 V
VEE = −2.5 V
VO, OUTPUT VOLTAGE (Vpp)
IISCI, OUTPUT SHORT CIRCUIT CURRENT (mA)
PDmax, MAXIMUM POWER DISSIPATION (mW)
MC33501, MC33503
http://onsemi.com
9
40
PERCENTAGE OF AMPLIFIERS (%)
INPUT OFFSET VOLTAGE (mV)
0
10
20
30
40
50
−5.0
VCC = 3.0 V
VO = 1.5 V
VEE = 0 V
TA = 25°C
60 Amplifiers Tested
from 2 Wafer Lots
−4.0 −3.0 −2.0 −1.0 0 1.0 2.0 3.0 4.0 5.0
ICC, SUPPLY CURRENT PER AMPLIFIER (mA)
TCVIO, INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (mV/°C)
0
10
20
30
50
−50
VCC = 3.0 V
VO = 1.5 V
VEE = 0 V
60 Amplifiers Tested
from 2 Wafer Lots
−55 −25 0 25 50 75 100 125
TA, AMBIENT TEMPERATURE (°C)
100
0
Figure 15. Output Short Circuit Current
versus Temperature
20
40
60
80 Sink
Source
VCC = 2.5 V
VEE = −2.5 V
VCC, |VEE|, SUPPLY VOLTAGE (V)
±2.5
0±0.5 ±1.00
0.5
1.0
1.5
Figure 16. Supply Current per Amplifier
versus Supply Voltage with No Load
±1.5 ±2.0
2.0
2.5
TA = 125°C
100 k
f, FREQUENCY (Hz)
0.001
0.01
100 1.0 k 10 k10
10
0.1
1.0
AV = 1000
VCC − VEE = 1.0 V
TA = 25°CTA = −55°C
−40 −30 −20 −10 0 10 20 30 40 50
AV = 100
AV = 10
AV = 1.0
100 k
f, FREQUENCY (Hz)
0.001
0.01
100 1.0 k 10 k10
10
0.1
1.0 AV = 1000
VCC − VEE = 5.0 V
AV = 100
AV = 10
AV = 1.0
Figure 17. Input Offset Voltage
Temperature Coefficient Distribution Figure 18. Input Offset Voltage Distribution
Figure 19. Total Harmonic Distortion
versus Frequency with 1.0 V Supply Figure 20. Total Harmonic Distortion
versus Frequency with 5.0 V Supply
Vout = 0.5 Vpp
RL = 600 W
Vout = 4.0 Vpp
RL = 600 W
IISCI, OUTPUT SHORT CIRCUIT CURRENT (mA)
PERCENTAGE OF AMPLIFIERS (%)
THD, TOTAL HARMONIC DISTORTION (%)
THD, TOTAL HARMONIC DISTORTION (%)
MC33501, MC33503
http://onsemi.com
10
0
1.0
2.0
3.0
4.0
5.0
−25 0 25 50 75 100 125
TA, AMBIENT TEMPERATURE (°C)
−55
0
20
40
60
−20
−40
1.0 M 10 M
f, FREQUENCY (Hz)
10 k 100 k
Figure 21. Slew Rate versus Temperature
−55 −25 0 25 50 75 100 125
TA, AMBIENT TEMPERATURE (°C)
0
1.0
2.0
3.0
4.0
VCC − VEE = 5.0 V
+ Slew Rate
−25 0 25 50 75 100 125−55
0
20
40
0
20
40
60
80
100
60
80
100
VCC − VEE = 5.0 V
RL = 600 W
CL = 100 pF
10 1.0 k 1.0 M100 100 k10 k
0
20
40
60
70
RT, DIFFERENTIAL SOURCE RESISTANCE (W)
Phase Margin
Gain Margin
CL, CAPACITIVE LOAD (pF)
3.0 10 100 1000 300030 300
0
10
20
50
60
30
40
VCC − VEE = 1.0 V
+ Slew Rate
VCC − VEE = 1.0 V
− Slew Rate
VCC − VEE = 5.0 V
− Slew Rate
SR, SLEW RATE (V/ s)μ
VCC − VEE = 5.0 V
f = 100 kHz
GBW, GAIN BANDWIDTH PRODUCT (MHz)
VCC − VEE
= 1.0 V
VCC − VEE = 5.0 V
VCC − VEE
= 5.0 V
VCC − VEE = 1.0 V
RL = 600 W
CL = 0
TA = 25°C
0
20
40
60
70
Phase Margin
Gain Margin
TA, AMBIENT TEMPERATURE (°C)
AV, GAIN MARGIN (dB)
VCC − VEE = 5.0 V
RL = 600 W
CL = 100 pF
TA = 25°C
0
10
20
50
60
30
40
AV, GAIN MARGIN (dB)
Figure 22. Gain Bandwidth Product
versus Temperature
Figure 23. Voltage Gain and Phase
versus Frequency Figure 24. Gain and Phase Margin
versus Temperature
Figure 25. Gain and Phase Margin versus
Differential Source Resistance Figure 26. Feedback Loop Gain and Phase
versus Capacitive Load
VCC − VEE = 5.0 V
RL = 600 W
TA = 25°C
50
30
10
Phase Margin
Gain Margin
10
30
50
AVOL, GAIN (dB)
Fm, PHASE MARGIN (°)
Fm, PHASE MARGIN (°)
Fm, PHASE MARGIN (°)
AV GAIN MARGIN (dB)
MC33501, MC33503
http://onsemi.com
11
Fm, PHASE MARGIN (°)
1234567
VCC − VEE, SUPPLY VOLTAGE (V)
0
0
20
40
20
40
60
80
100
60
80
100
Phase Margin
Gain Margin
RL = 600 W
CL = 0
TA = 25°C
10 1.0 k100 100 k
10
20
30
40
50
60
70
10 k
f, FREQUENCY (Hz)
VCC − VEE = 5.0 V
TA = 25°C
−55 −25 0 25 50 75 100 125
0
0.4
0.8
1.2
1.6
AVOL 10 dB
RL = 600 W
VCC − VEE, SUPPLY VOLTAGE (V)
0 1.0 2.0 3.0 4.0
0
20
40
60
120
5.0 6.0
RL = 600 W
TA = 25°C
80
100
VCC, |VEE|, SUPPLY VOLTAGE (V)
0±0.5 ±1.0 ±1.5 ±2.0 ±2.5 ±3.0 ±3.5
0
2.0
4.0
6.0
8.0
RL= 600 W
TA = 25°C
Figure 27. Channel Separation
versus Frequency
30 100 10 k 100 k 300 k300 30 k
AV = 100
0
20
40
100
120
60
80
VCC − VEE = 5.0 V
RL = 600 W
VO = 4.0 Vpp
TA = 25°C
f, FREQUENCY (Hz)
AV = 10
CS, CHANNEL SEPARATION (dB)
0
en, EQUIVALENT INPUT NOISE VOLTAGE (nV/ Hz)
0
TA, AMBIENT TEMPERATURE (°C)
Figure 28. Output Voltage Swing
versus Supply Voltage
Figure 29. Equivalent Input Noise Voltage
versus Frequency Figure 30. Gain and Phase Margin
versus Supply Voltage
Figure 31. Useable Supply Voltage
versus Temperature Figure 32. Open Loop Gain
versus Supply Voltage
VO, OUTPUT VOLTAGE (Vpp)
VCC−VEE, USEABLE SUPPLY VOLTAGE (V)
AVOL, OPEN LOOP GAIN (dB)
AV, GAIN MARGIN (dB)
MC33501, MC33503
http://onsemi.com
12
R
T
470 k
R2
470 k
R1b
470 k
R1a
470 k
CT
1.0 nF
1.0 V
fO
1.0 kHz
1.0 Vpp
R1
10 k
Rf
100 k
R2
10 k
Cf
400 pF
0.5 V
−0.5 V
C1
80 nF
VO
Af
fL
Figure 33. 1.0 V Oscillator
Figure 34. 1.0 V Voiceband Filter
fL+1
2pR1C1[200 Hz
fH+1
2pRfCf[4.0 kHz
Af+1)Rf
R2+11
+
+
fH
fO+1
RTCTInƪ2(R
1a )R1b)
R2ƫ
VCC
MC33501, MC33503
http://onsemi.com
13
15 V
10
79
MC34025
5
15 13
Output A
Output B
22 k
470 pF
100 k
1.0 k
From
Current Sense
3320
1.0 k
MC33502
Provides current sense
amplification and eliminates
leading edge spike.
FB 4.7
4.7
0.1
Figure 35. Power Supply Application
IODIO/DIL
Figure 36. 1.0 V Current Pump
+
12
8
14
11
4
16
6
1
3
2
IL
435 mA 463 mA
212 mA 492 mA−120 x 10−6
5.0 V
Vref
R2
3.3 k
R3
1.0 k
R1
1.0 k
IO1.0 V
R4
2.4 k VL
VO
For best performance, use low tolerance resistors.
IL
+
Rsense
R5
1.0 k
RL
75
MC33501, MC33503
http://onsemi.com
14
PACKAGE DIMENSIONS
SOT23−5
(TSOP−5, SC59−5)
SN SUFFIX
CASE 483−02
ISSUE E
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. MAXIMUM LEAD THICKNESS INCLUDES
LEAD FINISH THICKNESS. MINIMUM LEAD
THICKNESS IS THE MINIMUM THICKNESS
OF BASE MATERIAL.
4. A AND B DIMENSIONS DO NOT INCLUDE
MOLD FLASH, PROTRUSIONS, OR GATE
BURRS.
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A2.90 3.10 0.1142 0.1220
B1.30 1.70 0.0512 0.0669
C0.90 1.10 0.0354 0.0433
D0.25 0.50 0.0098 0.0197
G0.85 1.05 0.0335 0.0413
H0.013 0.100 0.0005 0.0040
J0.10 0.26 0.0040 0.0102
K0.20 0.60 0.0079 0.0236
L1.25 1.55 0.0493 0.0610
M0 10 0 10
S2.50 3.00 0.0985 0.1181
0.05 (0.002)
123
54
S
AG
L
B
D
H
C
KM
J
__ _ _
0.7
0.028
1.0
0.039
ǒmm
inchesǓ
SCALE 10:1
0.95
0.037
2.4
0.094
1.9
0.074
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
SOLDERING FOOTPRINT*
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty , representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, af filiates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
MC33501/D
SMARTMOS is a trademark of Motorola, Inc.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative