1
Semiconductor
Features
8.0A and 9.0A, 150V and 200V
•r
DS(ON) = 0.4 and 0.6
Single Pulse Avalanche Energy Rated
SOA is Power Dissipation Limited
Nanosecond Switching Speeds
Linear Transfer Characteristics
High Input Impedance
Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Description
These are N-Channel enhancement mode silicon gate
power field effect transistors. They are advanced power
MOSFETs designed, tested, and guaranteed to withstand a
specified level of energy in the breakdown avalanche mode
of operation. All of these power MOSFETs are designed for
applications such as switching regulators, switching conver-
tors, motor drivers, relay drivers, and drivers for high power
bipolar switching transistors requiring high speed and low
gate drive power. These types can be operated directly from
integrated circuits.
Formerly developmental type TA17412.
Symbol
Packaging
JEDEC TO-204AA
Ordering Information
PART NUMBER PA CKAGE BRAND
IRF230 TO-204AA IRF230
IRF231 TO-204AA IRF231
IRF232 TO-204AA IRF232
IRF233 TO-204AA IRF233
NO TE: When ordering, use the entire part number .
G
D
S
DRAIN
(FLANGE)
SOURCE (PIN 2)
GATE (PIN 1)
October 1997
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures.
Copyright © Harris Corporation 1997 File Number 1568.2
IRF230, IRF231,
IRF232, IRF233
8.0A and 9.0A, 150V and 200V, 0.4 and 0.6 Ohm,
N-Channel Power MOSFETs
2
Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified
IRF230 IRF231 IRF232 IRF233 UNITS
Drain to Source Breakdown Voltage (Note 1). . . . . . . . . .VDS 200 150 200 150 V
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . VDGR 200 150 200 150 V
Continuous Drain Current. . . . . . . . . . . . . . . . . . . . . . . . . . ID
TC= 100oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID9.0
6.0 9.0
6.0 8.0
5.0 8.0
5.0 A
A
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . IDM 36 36 32 32 A
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . .VGS ±20 ±20 ±20 ±20 V
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . .PD75 75 75 75 W
Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 0.6 0.6 0.6 W/oC
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . .EAS 150 150 150 150 mJ
Operating and Storage Temperature . . . . . . . . . . . .TJ, TSTG -55 to 150 -55 to 150 -55 to 150 -55 to 150 oC
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s . . . . . . . . . TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . Tpkg 300
260 300
260 300
260 300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to TJ = 125oC.
Electrical Specifications TC = 25oC, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V, (Figure 10)
IRF230, IRF232 200 - - V
IRF231, IRF233 150 - - V
Gate Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA 2.0 - 4.0 V
Gate to Source Leakage Current IGSS VGS = ±20V ±100 nA
Zero Gate Voltage Drain Current IDSS VDS = Rated BVDSS, VGS = 0V - - 25 µA
VDS = 0.8 x Rated BVDSS, VGS = 0V
TJ= 125oC- - 250 µA
On-State Drain Current (Note 2) ID(ON) VDS > ID(ON) x rDS(ON)MAX, VGS = 10V
IRF230, IRF231 9.0 - - A
IRF232, IRF233 8.0 - - A
Drain to Source On Resistance (Note 2) rDS(ON) ID = 5A, VGS = 10V, (Figure 8, 9)
IRF230, IRF231 - 0.25 0.4
IRF232, IRF233 - 0.4 0.6
Forward Transconductance (Note 2) gfs VDS 50V, ID = 5A, (Figure 12) 3.0 4.8 - S
Turn-On Delay Time td(ON) VDD = 90V, ID 5A,RG = 15Ω, RL =18
(Figures 17, 18) MOSFET Switching Times are
Essentially Independent of Operating
Temperature
- - 30 ns
Rise Time tr- - 50 ns
Turn-Off Delay Time td(OFF) - - 50 ns
Fall Time tf- - 40 ns
Total Gate Charge
(Gate to Source + Gate to Drain) Qg(TOT) VGS = 10V, ID = 12A, VDS = 0.8V x Rated BVDSS,
Ig(REF) = 1.5mA, (Figures 14, 19, 20) Gate
Charge is Essentially Independent of Operating
Temperature
-1930nC
Gate to Source Charge Qgs -10-nC
Gate to Drain “Miller” Charge Qgd -9-nC
IRF230, IRF231, IRF232, IRF233
3
Input Capacitance CISS VDS = 25V, VGS = 0V, f = 1MHz
(Figure 11) - 600 - pF
Output Capacitance COSS - 250 - pF
Reverse Transfer Capacitance CRSS -80-pF
Internal Drain Inductance LDMeasured Between the
Contact Screw on the
Flange that is Closer to
Source and Gate Pins
and the Center of Die
Modified MOSFET
Symbol Showing the
Internal Devices
Inductances
- 5.0 - nH
Internal Source Inductance LSMeasured From The
Source Lead, 6mm
(0.25in) From the Flange
and the Source Bonding
Pad
- 12.5 - nH
Thermal Resistance Junction to Case RθJC - - 1.6 oC/W
Thermal Resistance Junction to Ambient RθJA Free Air Operation - - 30 oC/W
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Continuous Source to Drain Current ISD Modified MOSFET Sym-
bol Showing the Integral
Reverse P-N Junction
Diode
- - 9.0 A
Pulse Source to Drain Current
(Note 3) ISDM - - 36 A
Source to Drain Diode Voltage (Note 2) VSD TJ = 25oC, ISD = 9.0A, VGS = 0V, (Figure 13) - - 2.0 V
Reverse Recovery Time trr TJ = 150oC, ISD = 9.0A, dISD/dt = 100A/µs - 450 - ns
Reverse Recovered Charge QRR TJ = 150oC, ISD = 9.0A, dISD/dt = 100A/µs - 3.0 - µC
NOTES:
2. Pulse test: pulse width 300µs, duty cycle 2%.
3. Repetitive rating: pulse width limited by max junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. VDD = 20V, starting TJ= 25oC, L = 3.37mH, RG=50Ω, peak IAS = 9A. See Figures 15, 16.
Electrical Specifications TC = 25oC, Unless Otherwise Specified (Continued)
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
LD
LS
D
S
G
G
D
S
IRF230, IRF231, IRF232, IRF233
4
Typical Performance Curves
Unless Otherwise Specified
FIGURE 1. NORMALIZED PO WER DISSIPATION vs CASE
TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. OUTPUT CHARACTERISTICS
0 50 100 150
0
TC, CASE TEMPERATURE (oC)
POWER DISSIPATION MULTIPLIER
0.2
0.4
0.6
0.8
1.0
1.2
TC, CASE TEMPERATURE (oC)
50 75 100 15025
10
8
6
0
4
ID, DRAIN CURRENT (A)
IRF230, IRF231
2
IRF232, IRF233
125
ZθJC, TRANSIENT THERMAL IMPEDANCE
1.0
0.1
0.01 10-2
10-5 10-4 10-3 0.1 1 10
t1, RECTANGULAR PULSE DURATION (s)
PDM
t1t2
2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ= PDM x ZθJC + TC
SINGLE PULSE
0.01
0.5
0.2
0.1
0.05
0.02
100
10
1
10001 10 100
OPERATION IN THIS
AREA IS LIMITED
BY rDS(ON)
0.1
ID, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VOLTAGE (V)
TC = 25oC
IRF231, 3
IRF230,1
IRF232, 3
IRF230, 2
TJ= MAX RATED
SINGLE PULSE
10µs
100µs
1ms
10ms
DC
IRF230,1
IRF232, 3
100ms
VDS, DRAIN TO SOURCE VOLTAGE (V)
20 40 600 100
20
16
12
0
8
ID, DRAIN CURRENT (A)
5V
8V
80µs PULSE TEST
4
4V
80
7V
VGS = 6V
10V
IRF230, IRF231, IRF232, IRF233
5
FIGURE 6. SATURATION CHARACTERISTICS FIGURE 7. TRANSFER CHARACTERISTICS
NOTE: Heating effect of 2µs pulse is minimal.
FIGURE 8. DRAIN T O SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
FIGURE 10. NORMALIZED DRAIN T O SOURCE BREAKDO WN
VOLTAGE vs JUNCTION TEMPERATURE FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
Typical Performance Curves
Unless Otherwise Specified (Continued)
10
8
6
0
4
123405
I
D
, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VOLTAGE (V)
2
80µs PULSE TEST
4.0V
VGS = 5.0V
6V
10V
8V
9V
7V
10
0123405
I
D
, DRAIN CURRENT (A)
VGS, GATE TO SOURCE VOLTAGE (V)
2
4
VDS > ID(ON) x rDS(ON)MAX
80µs PULSE TEST
125oC
25oC
67
6
8
-55oC
ID, DRAIN CURRENT (A)
10 20 30040
0.8
0.6
0
rDS(ON), DRAIN TO SOURCE
VGS = 20V
80µs PULSE TEST
0.2
VGS = 10V
ON RESISTANCE ()
2.2
1.4
0.6
060-60 TJ, JUNCTION TEMPERATURE (oC)
NORMALIZED DRAIN TO SOURCE
ID = 3.5A
1.8
1.0
0.2 -40 -20 20 40 80 100 140120
VGS = 10V
ON RESISTANCE
1.25
1.05
0.85
0 160
TJ, JUNCTION TEMPERATURE (oC)
NORMALIZED DRAIN TO SOURCE
1.15
0.95
0.75
-40 40 80 120
BREAKDOWN VOLTAGE
ID = 250µA
VDS, DRAIN TO SOURCE VOLTAGE (V)
C, CAPACITANCE (pF)
2000
1600
1200
800
400
0
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS CDS + CGD
CISS
COSS
CRSS
110 20 30 40 50
IRF230, IRF231, IRF232, IRF233
6
FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
Typical Performance Curves
Unless Otherwise Specified (Continued)
ID, DRAIN CURRENT (A)
2468010
10
8
6
0
4
gfs, TRANSCONDUCTANCE (S)
80µs PULSE TEST
2
TJ = 125oC
TJ = 25oC
TJ = -55oC
ISD, SOURCE TO DRAIN CURRENT (A)
VSD, SOURCE TO DRAIN VOLTAGE (V)
102
10
101234
T
J
= 25oC
TJ = 150oC
Qg(TOT), TOTAL GATE CHARGE (nC)
81624320
20
10
0
VGS, GATE TO SOURCE VOLTAGE (V)
5
ID = 9A
15
VDS = 160V
VDS = 100V
VDS = 40V
IRF230, IRF231, IRF232, IRF233
7
Test Circuits and Waveforms
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 16. UNCLAMPED ENERGY WAVEFORMS
FIGURE 17. SWITCHING TIME TEST CIRCUIT FIGURE 18. RESISTIVE SWITCHING WAVEFORM
FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS
tP
VGS
0.01
L
IAS
+
-
VDS
VDD
RG
DUT
VARY tP TO OBTAIN
REQUIRED PEAK IAS
0V
VDD
VDS
BVDSS
tP
IAS
tAV
0
VGS
RL
RG
DUT
+
-VDD
tON
td(ON)
tr
90%
10%
VDS 90%
10%
tf
td(OFF)
tOFF
90%
50%
50%
10% PULSE WIDTH
VGS
0
0
0.3µF
12V
BATTERY 50k
VDS
S
DUT
D
G
Ig(REF)
0
(ISOLATED
VDS
0.2µF
CURRENT
REGULATOR
ID CURRENT
SAMPLING
IG CURRENT
SAMPLING
SUPPLY)
RESISTOR RESISTOR
SAME TYPE
AS DUT Qg(TOT)
Qgd
Qgs
VDS
0
VGS
VDD
IG(REF)
0
IRF230, IRF231, IRF232, IRF233