< IGBT MODULES > CM75MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE Collector current I C .......................................... 75A Collector-emitter voltage V CES ......................... 1 2 0 0 V Maximum junction temperature T j m a x .............. 1 7 5 C Flat base Type Copper base plate Tin plating pin terminals RoHS Directive compliant CIB (Converter+Inverter+Chopper Brake) Recognized under UL1557, File E323585 APPLICATION AC Motor Control, Motion/Servo Control, Power supply, etc. OUTLINE DRAWING & INTERNAL CONNECTION Dimension in mm TERMINAL t=0.8 SECTION A INTERNAL CONNECTION Tolerance otherwise specified P(54~56) Division of Dimension P1(48~49) GUP(13) GVP(18) GWP(2 3) R(1~2) S(5~6) B(52~53) U(14~15) V(19~20) GB(41) GUN(40) N(59~61) GVP(33) GWN(3 1) W(24~25) NTC T(9~10) TH1(28) TH2(29) N1(44~45) Es(32) Es1(39) Caution: Each (two or three) pin terminal of P/N/P1/N1/U/V/W/B/R/S/T is connected in the module, but should use all each three pins for the external wiring. Publication Date : August 2013 1 3 Tolerance 0.5 to 0.2 over 3 to 6 0.3 over 6 to 30 0.5 over 30 to 120 0.8 over 120 to 400 1.2 The tolerance of size between terminals is assumed to be 0.4. < IGBT MODULES > CM75MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE ABSOLUTE MAXIMUM RATINGS (T j =25 C, unless otherwise specified) INVERTER PART IGBT/DIODE Rating Unit V CES Symbol Collector-emitter voltage G-E short-circuited 1200 V V GES Gate-emitter voltage C-E short-circuited 20 V IC Item DC, T C =122 C Collector current I CRM P tot IE I ERM (Note1) T jmax (Note2, 4) T C =25 C 75 (Note3) Pulse, Repetitive Total power dissipation (Note1) Conditions (Note2, 4) 600 (Note2) Emitter current W 75 (Note3) Pulse, Repetitive Maximum junction temperature A 150 A 150 Instantaneous event (overload) 175 C BRAKE PART IGBT/DIODE Rating Unit V CES Symbol Collector-emitter voltage G-E short-circuited 1200 V V GES Gate-emitter voltage C-E short-circuited 20 V IC I CRM Item Conditions DC, T C =125 C Collector current (Note2, 4) 50 (Note3) Pulse, Repetitive (Note2, 4) P tot Total power dissipation T C =25 C V RRM Repetitive peak reverse voltage G-E short-circuited (Note2) IF I FRM T jmax Forward current 425 W 1200 V 50 Pulse, Repetitive Maximum junction temperature A 100 (Note3) A 100 Instantaneous event (overload) 175 C CONVERTER PART DIODE Rating Unit V RRM Symbol Repetitive peak reverse voltage - 1600 V Ea Recommended AC input voltage RMS 440 V IO DC output current 3-phase full wave rectifying, T C =125 C 75 A Surge forward current The sine half wave 1 cycle peak value, f=60 Hz, non-repetitive 750 A I t Current square time Value for one cycle of surge current 2340 As T jmax Maximum junction temperature Instantaneous event (overload) 150 C Rating Unit I FSM 2 Item Conditions (Note4) 2 MODULE Symbol Item Conditions V isol Isolation voltage Terminals to base plate, RMS, f=60 Hz, AC 1 min T Cmax Maximum case temperature (Note4) 2500 V 125 C T jop Operating junction temperature Continuous operation (under switching) -40 ~ +150 T stg Storage temperature - -40 ~ +125 C MECHANICAL CHARACTERISTICS Symbol Ms Item Mounting torque Limits Conditions Mounting to heat sink Typ. Max. 2.5 3.0 3.5 Terminal to terminal 6.47 - - Terminal to base plate 14.27 - - ds Creepage distance da Clearance m mass - ec Flatness of base plate On the centerline X, Y M 5 screw Min. Unit N*m mm Terminal to terminal 6.47 - - Terminal to base plate 12.33 - - - 300 - g 0 - +100 m Publication Date : August 2013 2 (Note5) mm < IGBT MODULES > CM75MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE ELECTRICAL CHARACTERISTICS (T j =25 C, unless otherwise specified) INVERTER PART IGBT/DIODE Symbol Item Limits Conditions Min. Typ. Max. Unit I CES Collector-emitter cut-off current V CE =V CES , G-E short-circuited - - 1.0 mA I GES Gate-emitter leakage current V GE =V GES , C-E short-circuited - - 0.5 A V GE(th) Gate-emitter threshold voltage I C =7.5 mA, V CE =10 V 5.4 6.0 6.6 V I C =75 A V CEsat Collector-emitter saturation voltage C ies Input capacitance C oes Output capacitance C res Reverse transfer capacitance QG Gate charge t d(on) Turn-on delay time tr Rise time t d(off) Turn-off delay time tf Fall time T j =25 C - 1.80 2.25 V GE =15 V, T j =125 C - 2.00 - (Terminal) T j =150 C - 2.05 - I C =75 A (Note1) (Note1) t rr (Note6) , T j =25 C - 1.70 2.15 V GE =15 V, T j =125 C - 1.90 - (Chip) T j =150 C - 1.95 - , - - 7.5 - - 1.5 - - 0.13 - 175 - - - 300 - - 200 - - 600 V CE =10 V, G-E short-circuited V CC =600 V, I C =75 A, V GE =15 V V CC =600 V, I C =75 A, V GE =15 V, R G =8.2 , Inductive load - - 300 T j =25 C - 1.80 2.25 G-E short-circuited, T j =125 C - 1.80 - (Terminal) T j =150 C - 1.80 - T j =25 C - 1.70 2.15 G-E short-circuited, T j =125 C - 1.70 - (Chip) T j =150 C - 1.70 - I E =75 A V EC (Note6) Emitter-collector voltage I E =75 A (Note6) (Note6) , , V V nF nC ns V V Reverse recovery time V CC =600 V, I E =75 A, V GE =15 V, - - 300 ns Reverse recovery charge R G =8.2 , Inductive load - 4.0 - C E on Turn-on switching energy per pulse V CC =600 V, I C =I E =75 A, - 7.3 - E off Turn-off switching energy per pulse V GE =15 V, R G =8.2 , T j =150 C, - 8.0 - Reverse recovery energy per pulse Inductive load - 6.9 - mJ - - 4.0 m - 0 - (Note1) Q rr (Note1) E rr R CC'+EE' Internal lead resistance rg Internal gate resistance Main terminals-chip, per switch, (Note4) T C =25 C Per switch mJ BRAKE PART IGBT/DIODE Symbol Item I CES Collector-emitter cut-off current I GES Gate-emitter leakage current V GE =V GES , C-E short-circuited V GE(th) Gate-emitter threshold voltage I C =5 mA, V CE =10 V V CE =V CES , G-E short-circuited Collector-emitter saturation voltage C ies Input capacitance C oes Output capacitance C res Reverse transfer capacitance QG Gate charge Unit Min. Typ. Max. - - 1.0 mA - - 0.5 A 5.4 6.0 6.6 V T j =25 C - 1.80 2.25 V GE =15 V, T j =125 C - 2.00 - (Terminal) T j =150 C - 2.05 - I C =50 A V CEsat Limits Conditions I C =50 A (Note6) (Note6) , T j =25 C - 1.70 2.15 V GE =15 V, , T j =125 C - 1.90 - (Chip) T j =150 C - 1.95 - - - 5.0 V CE =10 V, G-E short-circuited - - 1.0 - - 0.08 V CC =600 V, I C =50 A, V GE =15 V - 117 - Publication Date : August 2013 3 V V nF nC < IGBT MODULES > CM75MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE ELECTRICAL CHARACTERISTICS (cont.; T j =25 C, unless otherwise specified) BRAKE PART IGBT/CLAMPDi Symbol Item t d(on) Turn-on delay time tr Rise time t d(off) Turn-off delay time tf Fall time I RRM Reverse current V CC =600 V, I C =50 A, V GE =15 V, R G =13 , Inductive load Forward voltage Min. Typ. Max. - - 300 - - 200 - - 600 300 - - - - 1.0 T j =25 C - 1.80 2.25 G-E short-circuited, T j =125 C - 1.80 - (Terminal) T j =150 C - 1.80 - T j =25 C - 1.70 2.15 G-E short-circuited, T j =125 C - 1.70 - (Chip) T j =150 C - 1.70 - V R =V RRM , G-E short-circuited (Note6) I F =50 A VF Limits Conditions (Note6) I F =50 A , , Unit ns mA V V t rr Reverse recovery time V CC =600 V, I F =50 A, V GE =15 V, - - 300 ns Q rr Reverse recovery charge R G =13 , Inductive load - 2.7 - C E on Turn-on switching energy per pulse V CC =600 V, I C =I F =50 A, - 5.5 - E off Turn-off switching energy per pulse V GE =15 V, R G =13 , T j =150 C, - 5.3 - E rr Reverse recovery energy per pulse Inductive load - 4.5 - mJ rg Internal gate resistance - - 0 - mJ CONVERTER PART CONVDi Symbol I RRM VF (Terminal) Item Conditions Reverse current V R =V RRM , T j =150 C Forward voltage I F =75 A (Note6) Limits Unit Min. Typ. Max. - - 20 mA - 1.2 1.6 V NTC THERMISTOR PART Symbol Item Conditions (Note4) R 25 Zero-power resistance T C =25 C R/R Deviation of resistance R 100 =493 , T C =100 C B (25/50) B-constant Approximate by equation P 25 Power dissipation T C =25 C (Note4) (Note7) (Note4) Limits Max. Unit Min. Typ. 4.85 5.00 5.15 k -7.3 - +7.8 % - 3375 - K - - 10 mW THERMAL RESISTANCE CHARACTERISTICS Symbol Item Conditions Limits Min. Typ. Max. R th(j-c)Q Junction to case, per Inverter IGBT - - 0.25 R th(j-c)D Junction to case, per Inverter DIODE - - 0.40 R th(j-c)Q Thermal resistance (Note4) R th(j-c)D R th(j-c)D R th(c-s) Contact thermal resistance (Note4) Unit K/W Junction to case, per Brake IGBT - - 0.35 Junction to case, per Brake CDIODE - - 0.63 Junction to case, per Converter DIODE - - 0.24 K/W - 15 - K/kW Case to heat sink, per 1 module, Thermal grease applied Publication Date : August 2013 4 (Note8) K/W < IGBT MODULES > CM75MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE -:Concave +:Convex Note1. Represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (FWDi). 2. Junction temperature (T j ) should not increase beyond T j m a x rating. 3. Pulse width and repetition rate should be such that the device junction temperature (T j ) dose not exceed T j m a x rating. 4. Case temperature (T C ) and heat sink temperature (T s ) are defined on the each surface (mounting side) of base plate and heat sink just under the chips. Refer to the figure of chip location. 5. The base plate (mounting side) flatness measurement points (X, Y) are as follows of the following figure. Y X mounting side mounting side -:Concave mounting side +:Convex 6. Pulse width and repetition rate should be such as to cause negligible temperature rise. Refer to the figure of test circuit. R 1 1 7. B ( 25 / 50) ln( 25 ) /( ), R 50 T25 T50 R 25 : resistance at absolute temperature T 25 [K]; T 25 =25 [C]+273.15=298.15 [K] R 50 : resistance at absolute temperature T 50 [K]; T 50 =50 [C]+273.15=323.15 [K] 8. Typical value is measured by using thermally conductive grease of =0.9 W/(m*K). 9. Use the following screws when mounting the printed circuit board (PCB) on the stand offs. "2.6x10 or 2.6x12 self tapping screw" The length of the screw depends on the thickness (t1.6~t2.0) of the PCB.. RECOMMENDED OPERATING CONDITIONS Symbol Item V CC (DC) Supply voltage V GEon Gate (-emitter drive) voltage RG External gate resistance Conditions Applied across P-N/P1-N1 terminals Applied across GB-Es/ G*P-*/G*N-Es(*=U, V, W) terminals Inverter IGBT Per switch Brake IGBT Publication Date : August 2013 5 Limits Unit Min. Typ. Max. - 600 850 V 13.5 15.0 16.5 V 8.2 - 82 13 - 130 < IGBT MODULES > CM75MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE CHIP LOCATION (Top view) Dimension in mm, tolerance: 1 mm Tr*P/Tr*N/TrBr: IGBT, Di*P/Di*N: DIODE (*=U/V/W), DiBr: BRAKE DIODE, CR*P/CR*N: CONVERTER DIODE (*=R/S/T), Th: NTC thermistor iE vGE P1 *: U, V, W TEST CIRCUIT AND WAVEFORMS 90 % 0V 0 iE t + V CC IE iC -VGE * trr 0A 90 % RG t Irr vCE +V GE Q r r =0.5xI r r xt r r Load G*P 0.5xI r r G*N 0V iC vGE 10% -V GE 0A tr N1 Es td ( o n ) tf td ( o ff ) t Switching characteristics test circuit and waveforms t r r , Q r r test waveform iE iC iC ICM vCE VCC 0.1xICM 0.1xVCC 0 vEC VCC vCE VCC 0.1xVCC t IEM ICM 0.02xICM 0 ti ti IGBT Turn-on switching energy IGBT Turn-off switching energy t 0A t 0V t ti DIODE Reverse recovery energy Turn-on / Turn-off switching energy and Reverse recovery energy test waveforms (Integral time instruction drawing) Publication Date : August 2013 6 < IGBT MODULES > CM75MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE TEST CIRCUIT 48~49 48~49 VGE=15V 48~49 VGE=15V IC 13 14~15 VGE=15V IC 18 19~20 V Sho rtcircuited 24~25 V 32 44~45 44~45 P1 32 GUP P1 V G-E short-circuited N1 G-E short-circuited UP / UN IGBT VGE=15V IC GWN N1 Es GVP-V, GVN-Es, GWP-W, GWN-Es, GB-Es B VGE=15V IC GVN V W VGE=15V IC P1 V V VGE=15V 44~45 39 GWP V U Es 44~45 Sho rtcircuited GVP GUN 41 P1 Sho rtcircuited V Sho rtcircuited 31 32 Sho rtcircuited 52~53 V Sho rtcircuited 33 IE IC 23 Sho rtcircuited 40 48~49 N1 Es GUP-U, GUN-Es, GWP-W, GWN-Es, GB-Es G-E short-circuited VP / VN IGBT IC GB N1 Es1 GUP-U, GUN-Es, GVP-V, GVN-Es, GB-Es WP / WN IGBT G-E short-circuited GUP-U, GUN-Es, GVP-V, GVN-Es, GWP-W, GWN-Es Brake IGBT / DIODE V CE s a t / BRAKE DIODE V F test circuit 48~49 Sho rtcircuited 48~49 Sho rtcircuited IE 13 48~49 Sho rtcircuited IE 18 14~15 19~20 24~25 V Sho rtcircuited 40 32 44~45 P1 32 P1 Sho rtcircuited GUP Es G-E short-circuited 59~61 P1 P Sho rtcircuited N1 Sho rtcircuited IE G-E short-circuited UP / UN DIODE R IF IE GWN N1 Es V V W GVN GVP-V, GVN-Es, GWP-W, GWN-Es, GB-Es 44~45 V V GUN V GWP V U IE 1~2 Sho rtcircuited GVP Sho rtcircuited V 31 32 Sho rtcircuited IF Sho rtcircuited 33 44~45 IE 23 V Sho rtcircuited 54~56 Es GUP-U, GUN-Es, GWP-W, GWN-Es, GB-Es G-E short-circuited VP / VN DIODE N1 N GUP-U, GUN-Es, GVP-V, GVN-Es, GB-Es WP / WN DIODE CONVERTER DIODE (ex. phase-R) V EC / CONVERTER DIODE V F test circuit * In the above test circuit, should use all three main pin terminals (P1/N1/P/N/U/V/W) for connection with the terminals and the current source. Publication Date : August 2013 7 < IGBT MODULES > CM75MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES INVERTER PART OUTPUT CHARACTERISTICS (TYPICAL) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) T j =25 C V GE =15 V (Chip) V GE =20 V 3 12 V COLLECTOR-EMITTER SATURATION VOLTAGE V CE (V) I C (A) COLLECTOR CURRENT 13.5 V 15 V 125 100 11 V 75 10 V 50 9V 25 T j =150 C T j =125 C 2.5 2 1.5 T j =25 C 1 0.5 0 0 0 2 4 6 8 COLLECTOR-EMITTER VOLTAGE 0 10 50 V CE (V) T j =25 C 100 COLLECTOR CURRENT 150 I C (A) FREE WHEELING DIODE FORWARD CHARACTERISTICS (TYPICAL) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) G-E short-circuited (Chip) (Chip) 1000 10 I E (A) I C =150 A 8 I C =75 A 6 EMITTER CURRENT COLLECTOR-EMITTER SATURATION VOLTAGE V CE (V) (Chip) 3.5 150 I C =30 A 4 2 100 T j =150 C T j =125 C T j =25 C 0 6 8 10 12 14 GATE-EMITTER VOLTAGE 16 18 10 20 0.5 V GE (V) 1 1.5 2 EMITTER-COLLECTOR VOLTAGE Publication Date : August 2013 8 2.5 V EC (V) 3 < IGBT MODULES > CM75MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES INVERTER PART HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) V CC =600 V, V GE =15 V, R G =8.2 , INDUCTIVE LOAD ---------------: T j =150 C, - - - - -: T j =125 C V CC =600 V, V GE =15 V, I C =75 A, INDUCTIVE LOAD ---------------: T j =150 C, - - - - -: T j =125 C 1000 1000 t d(off) tf 100 SWITCHING TIME (ns) SWITCHING TIME (ns) tf t d(on) 10 tr t d(off) 100 t d(on) tr 10 1 1 10 COLLECTOR CURRENT 1 100 I C (A) EXTERNAL GATE RESISTANCE 10 E on SWITCHING ENERGY (mJ) REVERSE RECOVERY ENERGY (mJ) E off REVERSE RECOVERY ENERGY (mJ) SWITCHING ENERGY (mJ) R G () 100 100 1 100 HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) V CC =600 V, V GE =15 V, I C =75 A, INDUCTIVE LOAD, PER PULSE ---------------: T j =150 C, - - - - -: T j =125 C HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) V CC =600 V, V GE =15 V, R G =8.2 , INDUCTIVE LOAD, PER PULSE ---------------: T j =150 C, - - - - -: T j =125 C 10 10 E on E off 10 E rr E rr 0.1 1 1 1 10 1 100 COLLECTOR CURRENT I C (A) EMITTER CURRENT I E (A) 10 EXTERNAL GATE RESISTANCE Publication Date : August 2013 9 100 R G () < IGBT MODULES > CM75MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES INVERTER PART CAPACITANCE CHARACTERISTICS (TYPICAL) FREE WHEELING DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL) V CC =600 V, V GE =15 V, R G =8.2 , INDUCTIVE LOAD ---------------: T j =150 C, - - - - -: T j =125 C G-E short-circuited, T j =25 C 100 1000 C ies t r r (ns), I r r (A) CAPACITANCE (nF) 10 C oes 1 0.01 10 0.1 1 10 COLLECTOR-EMITTER VOLTAGE 100 1 V CE (V) 10 EMITTER CURRENT 100 I E (A) GATE CHARGE CHARACTERISTICS (TYPICAL) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (MAXIMUM) V CC =600 V, I C =75 A, T j =25 C Single pulse, T C =25 C R t h ( j - c ) Q =0.25 K/W, R t h ( j - c ) D =0.40 K/W 20 1 NORMALIZED TRANSIENT THERMAL RESISTANCE Z th(j-c) V GE (V) t rr C res 0.1 GATE-EMITTER VOLTAGE I rr 100 15 10 5 0 0 50 100 GATE CHARGE 150 200 250 Q G (nC) 0.1 0.01 0.001 0.00001 0.0001 0.001 0.01 TIME (S) Publication Date : August 2013 10 0.1 1 10 < IGBT MODULES > CM75MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES BRAKE PART COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) CLAMP DIODE FORWARD CHARACTERISTICS (TYPICAL) V GE =15 V G-E short-circuited (Chip) 3.5 3 T j =150 C 2 1.5 T j =150 C V F (V) T j =125 C 2.5 FORWARD VOLTAGE COLLECTOR-EMITTER SATURATION VOLTAGE V CEsat (V) (Chip) 100 T j =25 C 1 10 T j =25 C T j =125 C 0.5 0 1 0 20 40 60 COLLECTOR CURRENT 80 100 0.5 1 I C (A) 1.5 FORWARD CURRENT 2 2.5 I F (A) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) V CC =600 V, V GE =15 V, R G =13 , INDUCTIVE LOAD ---------------: T j =150 C, - - - - -: T j =125 C V CC =600 V, I C =50 A, V GE =15 V, INDUCTIVE LOAD ---------------: T j =150 C, - - - - -: T j =125 C 1000 1000 t d(off) tf 100 SWITCHING TIME (ns) SWITCHING TIME (ns) tf t d(on) 10 tr t d(off) 100 t d(on) tr 1 10 1 10 COLLECTOR CURRENT 10 100 I C (A) 100 EXTERNAL GATE RESISTANCE Publication Date : August 2013 11 1000 R G () < IGBT MODULES > CM75MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES BRAKE PART HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) V CC =600 V, V GE =15 V, R G =13 , INDUCTIVE LOAD, PER PULSE ---------------: T j =150 C, - - - - -: T j =125 C HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) V CC =600 V, I C /I F =50 A, V GE =15 V, INDUCTIVE LOAD, PER PULSE ---------------: T j =150 C, - - - - -: T j =125 C 100 E rr SWITCHING ENERGY (mJ) REVERSE RECOVERY ENERGY (mJ) SWITCHING ENERGY (mJ) REVERSE RECOVERY ENERGY (mJ) 10 E off 1 E on 0.1 E on 10 E off E rr 1 1 10 100 10 COLLECTOR CURRENT I C (A) FORWARD CURRENT I F (A) 1000 EXTERNAL GATE RESISTANCE R G () CLAMP DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (MAXIMUM) V CC =600 V, V GE =15 V, R G =13 , INDUCTIVE LOAD ---------------: T j =150 C, - - - - -: T j =125 C Single pulse, T C =25 C R t h ( j - c ) Q =0.35 K/W, R t h ( j - c ) D =0.63 K/W 1000 1 100 NORMALIZED TRANSIENT THERMAL RESISTANCE Z th(j-c) t r r (ns), I r r (A) 100 t rr I rr 10 1 10 FORWARD CURRENT 100 I F (A) 0.1 0.01 0.001 0.00001 0.0001 0.001 0.01 TIME (S) Publication Date : August 2013 12 0.1 1 10 < IGBT MODULES > CM75MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES CONVERTER PART CONVERTER DIODE FORWARD CHARACTERISTICS (TYPICAL) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (MAXIMUM) Single pulse, T C =25 C R t h ( j - c ) D =0.24 K/W 100 NORMALIZED TRANSIENT THERMAL RESISTANCE Z th(j-c) 1 FORWARD CURRENT I F (A) T j =125 C 10 T j =25 C 1 0.4 0.6 0.8 1 1.2 FORWARD VOLTAGE 1.4 1.6 V F (V) TEMPERATURE CHARACTERISTICS (TYPICAL) RESISTANCE R (k) 100 10 1 0.1 -25 0 25 50 TEMPERATURE 75 0.01 0.001 0.00001 0.0001 0.001 0.01 TIME (S) NTC thermistor part -50 0.1 100 125 T (C) Publication Date : August 2013 13 0.1 1 10 < IGBT MODULES > CM75MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE Keep safety first in your circuit designs! Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials *These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. *Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. *All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (www.MitsubishiElectric.com/semiconductors/). *When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information containedherein. *Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. *The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. *If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. *Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein. (c) 2012 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED. Publication Date : August 2013 14