Standard Power MOSFETs 2N6769, 2N6770 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power MOS Field-Effect Transistors 11A and 12A, 450V - 500V Toston = 0.5Q and 0.40Q Features: SOA is power-dissipation limited g Nanosecond switching speeds @ Linear transfer characteristics @ High input impedance m@ Majority carrier device The 2N6769 and 2N6770 are n-channel enhancement-mode silicon-gate power MOS field-effect transistors designed for applications such as switching regulators, switching conver- ters, motor drivers, relay drivers, and drivers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The 2N6769 and 2N6770 are supplied in the JEDEC TO- 204AA steel package. MAXIMUM RATINGS, Absolute-Maximum Values: *DRAIN-SOURCE VOLTAGE ........- 2c cece cece e eee e eee Voss *DRAIN-GATE VOLTAGE, Rgs = 1 MQ... eee cee eee Vper *GATE-SOURCE VOLTAGE ........... ccc c eee eee eet cence Ves DRAIN CURRENT, RMS Continuous lo At Te = 28C oo. c ec cccceeee eee eee At To = 100C oo ccc c cee eee eee e eee PUISEd 2... cece cee cee cece eee eeeeees lpm *POWER DISSIPATION Pr At Tc = 25C Above Tc = 25C, Derate Linearly ............... 00sec eee eee INDUCTIVE CURRENT, CLAMPED (L = 100uH) OPERATING AND STORAGE TEMPERATURE ............. Ti, Tstg *LEAD TEMPERATURE (0.063 in. or 1.6 mm from (ors yok (0) dia L-) Te *JEDEC REGISTERED DATA 3-500 File Number 1899 N-CHANNEL ENHANCEMENT MODE O LAD $s 92CS -33741 TERMINAL DIAGRAM TERMINAL DESIGNATION DRAIN SOURCE (FLANGE ) O% Oo GATE 92cs- 376801 JEDEC TO-204AA 2N6769 2N6770 450 500 Vv 450 500 Vv +20 V ani 12 A 7 7.75 A 20 25 A 150 ______. WwW 1.2 WC 20 25 A -55 to +150 ~ C 300 C Standard Power MOSFETs 2N6769, 2N6770 . . 2 . : Electrical Characteristics @ T = 25C (Unless Otherwise Specified) Parameter Type Min, Typ. Max Units Test Conditions BVoss Orain Source Breakdown Voltage | 2N6769 450 - - Vv Veg 20 2N6770 500 - - v Ip =4.0mA Vesith) Gate Threshold Voltage ALL 2.0 - 4.0* Vv VYos= Yes. '!p1 mA '6ssF Gate Body Leakage Forward ALL - - 100 nA et = 20V lossp Gate Body Leakage Reverse ALL = ~ 100 nA Vos= ~20V oss Zero Gate Voltage Drain Current L - 0.1 1.0* mA Vos = 0.8 x Max. Rating, Ves70 AL = 0.2 | 40 | mA | Vog = Max. Rating. Vgg = 0, Te = 25C to 125C Vpston) Static Drain-Source On-State 2N6769 - - 6.0 Vv Vag = 10V. Ip = 114 Voltage 2 2n6770 | - 6.0" v Vag = 10, Ip = 12A Roston) Static Drain-Source On-State 2N6769 - 04 0.5 2 V@s = 10V, Ip = 7A Resistance oO ; 2N6770 = 03 | 04* 2 | Vgg = 10V, 1p = 7.754 Rosten) Static Drain-Source On-State 2N6769 - - 1 2 Ves = 10V, Ip = 7.0A, Teo = 125C Resistance oO - 2N6770 | - 0.88" 2 | Vgg= 10V, Ip = 7.75A, Te = 125C oF, Forward Transconductance (1) ALL 8.0 12,0 24 $(U) | Vgg=10V Ip=7.75A Cisg Input Capacitance ALL 1000* | 2000 3000* pF , - Vas = 0. Vpg = 25V, f = 1.0 MHz Coss Output Capacitance ALL 200 400 600 pF See Fig. 10 See Fig. C,.. Reverse Transfer Capacitance ALL 50 100 200 pF td (on) Turn-On Delay Time ALL - - 35 ng Vop = 210V, Ip = 7.75A, 2, = 4.72 ty Rise Time ALL - - 50 ns (See Figs. 13 and 14) tg (off) Turn-Off Delay Time ALL - - 150 ns (MOSFET switching times are essentially tf Fall Time ALL - = 70* ns independent of operating temperature.) Thermal Resistance Rinse Junction-to-Case ALL - - 0.83* | o/;w Rincs _Case-to-Sink ALL > 0.1 - C/W | Mounting surface flat, smooth, and greased. Ringa _ Junction-to-Ambient ALL _ 30 C/W Free Air Operation Body-Drain Diode Ratings and Characteristics Is Continuous Source Current 21N6769 = = 11 A Modified MOSFET symbol Dd (Body Diode} N6770 = _ 12 showing the integral : reverse P-N junction rectifier. Iona Pulsed Source Current 2N6769 _ _ 20 A G (Body Diode) 2N6770 - = 25 s Vsp Diode Forward Voltage (7) 2N6769 | 0.75 - 15 v Te = 28C, ig = 11A, Vgg = 0 2N6770 0.80* ~ 1.6* v To = 26C, Ig = 12A, Vag = 0 ter Reverse Recovery Time ALL - 1300 - ns Ty = 150C, Ip = Igy. dig /dt = 100 A/us Qar Reverse Recovered Charge ALL - 74 uc Ty = 150C, ig = Iggy, dig/dt = 100 A/us *JEDEC registered values. VARY tp TO OBTAIN REQUIRED PEAK 1, Vgg = 10V boty Fig. 1 - Clamped inductive test circuit. Pulse Test: Pulse Width & 300 usec, Duty Cycle < 2% ty [| a \ Ne, \.--- Fig. 2 - Clamped inductive waveforms. 3-501 Standard Power MOSFETs 2N6769, 2N6770 20 2 Vps = 18V Tyr 78% 1 ' Ty 1250 00 us PULSE TEST 3 is : g 5 3 . 2 2 = = 10 So 4 = 3 z g 2 S, $5 0 so 100 150 200 750 300 Vos, ORAIN-TO-SOURCE VOLTAGE (VOLTS) Q yo? 3 4 6 F 8 Vs. GATE-T0-SOURCE VOLTAGE (VOLTS) Fig. 3 - Typical output characteristics for both types. Fig. 4 - Typical transter characteristics for both types. 10 10 PULSE TEST 8 8 8 a z z 6 Zz 6 5 5 z = 3 8 2 4 z 4 5 3 s Ss 2 2 3.5V 0 1 2 3 4 5 Q 1 2 3 4 5 Vos. ORAIN-TO.SOUACE VOLTAGE iVOLTS) Vos. ORAIN-TO-SOURGE VOLTAGE (VOLTS) Fig. 5 - Typical saturation characteristics for the 2N6769. Fig. 6. - Typical saturation characteristics for the 2N6770. 100 50 20 Z g z & 10 2 2 Z = 5.0 < = S a 2 s : a 20 a =z 8 z = B10 = s z Vos + 15V T= 0 TEST SINGLE PULSE o 5 0 1s 20 3s So 310 20 50 100 200 500 tp, DRAIN CURRENT {AMPERES} Vos, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 7 - Typical transconductance versus drain current Fig. 8 - Maximum safe operating area for both types. for both types. 3-502 Standard Power MOSFETs 2N6769, 2N6770 4000 Ves*0 i] fs. 8 3200 1 MHz < 2 a =< = < Zs = 2000 oy 2 zs < aa - 32 s o $s < z= = 1600 = o ec a z 2 Ves = t0V 600 i} = Ip = 7.75A 40 0 40 80 120 160 0 10 20 ww 40 50 Ty, JUNCTION TEMPERATURE (C) Vos. ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 9 - Typical normalized on-resistance versus temp- Fig. 10 - Typical capacitance versus drain-to-source erature for both types. voltage for both types. bguq, 2NG770 2 E 2 0 ts, 2N6770 = = z = s e < & < = 3 = 5 Z 3 4 Ty = 150C Ty= 25C = : 3 8 Py 2 1 a 2 40st 8 ' 2 Te, CASE TEMPERATURE (C) Vgq. SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 11 - Power versus temperature erating curve Fig. 12 - Typical body-drain diode forward voltage for both types. for both types. a 230v PULSE WIDTH Yop = vi GS {on} 30% o0% 272 INPUT, Vj 50% PRE = 1 kHz . Vv, 10% 10% Vi 8 VGs (off) INPUT PULSE INPUT PULSE TO SCOPE ~ RISE TIME ~ FALL TIME 'd (on) > = tg (oft) > E ~ & ty v a DS (off} 70% ] "0% QUTPUT, Vo 90% 90% VDS ton} LL ton }ae off Fig. 13 - Switching time test circuit. Fig. 14 - Switching time waveforms 3-503