DATA SH EET
Product specification June 2001
DISCRETE SEMICONDUCTORS
BT137X series E
Triacs
sensitive gate
NXP Semiconductors Product specification
Triacs BT137X series E
sensitive gate
GENERAL DESCRIPTION QUICK REFERENCE DATA
Passivated, sensitive gate triacs in a SYMBOL PARAMETER MAX. MAX. UNIT
full pack, plastic envelope, intended
for use in general purpose BT137X- 600E 800E
bidirectional switching and phase VDRM Repetitive peak off-state 600 800 V
control applications, where high voltages
sensitivity is required in all four IT(RMS) RMS on-state current 8 8 A
quadrants. ITSM Non-repetitive peak on-state 65 65 A
current
PINNING - SOT186A PIN CONFIGURATION SYMBOL
PIN DESCRIPTION
1 main terminal 1
2 main terminal 2
3 gate
case isolated
LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134).
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
-600 -800
VDRM Repetitive peak off-state - 6001800 V
voltages
IT(RMS) RMS on-state current full sine wave; Ths 73 ˚C - 8 A
ITSM Non-repetitive peak full sine wave; Tj = 25 ˚C prior to
on-state current surge
t = 20 ms - 65 A
t = 16.7 ms - 71 A
I2tI
2t for fusing t = 10 ms - 21 A2s
dIT/dt Repetitive rate of rise of ITM = 12 A; IG = 0.2 A;
on-state current after dIG/dt = 0.2 A/µs
triggering T2+ G+ - 50 A/µs
T2+ G- - 50 A/µs
T2- G- - 50 A/µs
T2- G+ - 10 A/µs
IGM Peak gate current - 2 A
VGM Peak gate voltage - 5 V
PGM Peak gate power - 5 W
PG(AV) Average gate power over any 20 ms period - 0.5 W
Tstg Storage temperature -40 150 ˚C
TjOperating junction - 125 ˚C
temperature
T1T2
G
123
case
1 Although not recommended, off-state voltages up to 800V may be applied without damage, but the triac may
switch to the on-state. The rate of rise of current should not exceed 6 A/µs.
June 2001 1 Rev 1.400
NXP Semiconductors Product specification
Triacs BT137X series E
sensitive gate
ISOLATION LIMITING VALUE & CHARACTERISTIC
Ths = 25 ˚C unless otherwise specified
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Visol R.M.S. isolation voltage from all f = 50-60 Hz; sinusoidal - - 2500 V
three terminals to external waveform;
heatsink R.H. 65% ; clean and dustfree
Cisol Capacitance from T2 to external f = 1 MHz - 10 - pF
heatsink
THERMAL RESISTANCES
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Rth j-hs Thermal resistance full or half cycle
junction to heatsink with heatsink compound - - 4.5 K/W
without heatsink compound - - 6.5 K/W
Rth j-a Thermal resistance in free air - 55 - K/W
junction to ambient
STATIC CHARACTERISTICS
Tj = 25 ˚C unless otherwise stated
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
IGT Gate trigger current VD = 12 V; IT = 0.1 A
T2+ G+ - 2.5 10 mA
T2+ G- - 4.0 10 mA
T2- G- - 5.0 10 mA
T2- G+ - 11 25 mA
ILLatching current VD = 12 V; IGT = 0.1 A
T2+ G+ - 3.0 25 mA
T2+ G- - 14 35 mA
T2- G- - 3.0 25 mA
T2- G+ - 4.0 35 mA
IHHolding current VD = 12 V; IGT = 0.1 A - 2.5 20 mA
VTOn-state voltage IT = 10 A - 1.3 1.65 V
VGT Gate trigger voltage VD = 12 V; IT = 0.1 A - 0.7 1.5 V
VD = 400 V; IT = 0.1 A; Tj = 125 ˚C 0.25 0.4 - V
IDOff-state leakage current VD = VDRM(max); Tj = 125 ˚C - 0.1 0.5 mA
DYNAMIC CHARACTERISTICS
Tj = 25 ˚C unless otherwise stated
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
dVD/dt Critical rate of rise of VDM = 67% VDRM(max); Tj = 125 ˚C; - 50 - V/µs
off-state voltage exponential waveform; gate open circuit
tgt Gate controlled turn-on VD = VDRM(max); IG = 0.1 A; dIG/dt = 5 A/µs; - 2 - µs
time ITM = 12 A
June 2001 2 Rev 1.400
NXP Semiconductors Product specification
Triacs BT137X series E
sensitive gate
Fig.1. Maximum on-state dissipation, Ptot, versus rms
on-state current, IT(RMS), where α = conduction angle.
Fig.2. Maximum permissible non-repetitive peak
on-state current ITSM, versus pulse width tp, for
sinusoidal currents, tp 20ms.
Fig.3. Maximum permissible non-repetitive peak
on-state current ITSM, versus number of cycles, for
sinusoidal currents, f = 50 Hz.
Fig.4. Maximum permissible rms current IT(RMS) ,
versus heatsink temperature Ths.
Fig.5. Maximum permissible repetitive rms on-state
current IT(RMS), versus surge duration, for sinusoidal
currents, f = 50 Hz; Ths 73˚C.
Fig.6. Normalised gate trigger voltage
VGT(Tj)/ VGT(25˚C), versus junction temperature Tj.
0246810
0
2
4
6
8
10
12 = 180
120
90
60
30
IT(RMS) / A
Ptot / W Ths(max) / C
125
116
107
98
89
80
71
1
-50 0 50 100 150
0
2
4
6
8
10 BT137X
73 C
Ths / C
IT(RMS) / A
10us 100us 1ms 10ms 100ms
10
100
1000
T / s
ITSM / A
TITSM
time
I
Tj initial = 25 C max
T2- G+ quadrant
dI /dt limit
T
0.01 0.1 1 10
0
5
10
15
20
25
surge duration / s
IT(RMS) / A
1 10 100 1000
0
Number of cycles at 50Hz
ITSM / A
1
10
20
30
40
50
60
70
80
TITSM
time
I
Tj initial = 25 C max
T
-50 0 50 100 150
0.4
0.6
0.8
1
1.2
1.4
1.6
Tj / C
VGT(Tj)
VGT(25 C)
June 2001 3 Rev 1.400
NXP Semiconductors Product specification
Triacs BT137X series E
sensitive gate
Fig.7. Normalised gate trigger current
IGT(Tj)/ IGT(25˚C), versus junction temperature Tj.
Fig.8. Normalised latching current IL(Tj)/ IL(25˚C),
versus junction temperature Tj.
Fig.9. Normalised holding current IH(Tj)/ IH(25˚C),
versus junction temperature Tj.
Fig.10. Typical and maximum on-state characteristic.
Fig.11. Transient thermal impedance Zth j-hs, versus
pulse width tp.
Fig.12. Typical, critical rate of rise of off-state voltage,
dVD/dt versus junction temperature Tj.
-50 0 50 100 150
0
0.5
1
1.5
2
2.5
3
Tj / C
T2+ G+
T2+ G-
T2- G-
T2- G+
IGT(Tj)
IGT(25 C)
0 0.5 1 1.5 2 2.5 3
0
5
10
15
20
25
VT / V
IT / A
Tj = 125 C
Tj = 25 C
typ max
Vo = 1.264 V
Rs = 0.0378 Ohms
-50 0 50 100 150
0
0.5
1
1.5
2
2.5
3
Tj / C
IL(Tj)
IL(25 C)
10us 0.1ms 1ms 10ms 0.1s 1s 10s
0.01
0.1
1
10
tp / s
Zth j-hs (K/W)
tp
P
t
D
bidirectional
unidirectional
with heatsink compound
without heatsink compound
-50 0 50 100 150
0
0.5
1
1.5
2
2.5
3
Tj / C
IH(Tj)
IH(25C)
0 50 100 150
1
10
100
1000
Tj / C
dVD/dt (V/us)
June 2001 4 Rev 1.400
NXP Semiconductors Product specification
Triacs BT137X series E
sensitive gate
MECHANICAL DATA
Dimensions in mm
Net Mass: 2 g
Fig.13. SOT186A; The seating plane is electrically isolated from all terminals.
Notes
1. Refer to mounting instructions for F-pack envelopes.
2. Epoxy meets UL94 V0 at 1/8".
10.3
max
3.2
3.0
4.6
max
2.9 max
2.8
seating
plane
6.4
15.8
max
0.6
2.5
2.54
5.08
123
3 max.
not tinned
3
0.5
2.5
0.9
0.7
M
0.4
15.8
max. 19
max.
13.5
min.
Recesses (2x)
2.5
0.8 max. depth
1.0 (2x)
1.3
June 2001 5 Rev 1.400
NXP Semiconductors
Legal information
DATA SHEET STATUS
Notes
1. Please cons ult the most recently issued document before initiating or comple ting a design.
2. The product status of dev i ce(s) described in this document may ha ve changed since this document was pub lished
and may differ in case of multiple devices. The latest product status information is available on the Internet at
URL http://www.nxp.com.
DOCUMENT
STATUS(1) PRODUCT
STATUS(2) DEFINITION
Objective data sheet Development This document contains data from the objective specification for pro duc t
development.
Preliminary data sheet Qualification This document contains data from the preliminary specification.
Product data sheet Production This document contains the pr oduct specification.
DEFINITIONS
Product specification The information and da ta
provided in a Product data she et shall define the
specification of the product as agre ed between NXP
Semiconductors and its custo m er, unless NXP
Semiconductors and cus to mer have explicitly agreed
otherwise in writing. In no event however, shall an
agreement be valid in which th e NXP Semiconductors
product is deemed to offer functions and qualities beyond
those described in the Product data sheet.
DISCLAIMERS
Limited warranty and liability Information in this
document is believed to be accurate and reliable.
However, NXP Semiconduc tors does not give any
representations or warranties, expressed or implied, as to
the accuracy or completeness of such information and
shall have no liability for the consequences of use of such
information.
In no event shall NXP Semiconductors be liable for any
indirect, incidental, punitive, special or conseq uential
damages (including - without limitation - lost profits, lost
savings, busin es s inte rru ption, costs related to the
removal or replacement of any products or rework
charges) whether or not such damages are based on tort
(including negligence), warranty, breach of contract or any
other legal theory.
Notwithstanding any damages that customer might incur
for any reason whatsoever, NXP Semiconductors’
aggregate and cumulative liability towards customer for
the products described herein shall be limited in
accordance with the Terms and conditio ns of commercial
sale of NXP Semiconductors.
Right to make changes NXP Semiconductors
reserves the right to make changes to information
published in this document, including without limitation
specifications and prod uct descriptions, at any time and
without notice. This document supersedes and replaces all
information su pplied prior to the publicat ion hereof.
Suitability for use NXP Semiconductors products are
not designed, authorized or warranted to be suitable for
use in life support, life-critical or safety-critical sys tems or
equipment, nor in applications where failure or malfunction
of an NXP Semiconductors product can reasonably be
expected to res ult in personal injur y, de ath or severe
property or environmental damage. NXP Semiconductors
accepts no liability for inclusion and/or use of NXP
Semiconductor s pr od ucts in such equipment or
application s and therefore such inclusion and/or use is at
the customer’s own risk.
Applications Applications that are described herein for
any of these products are for illustrative purposes only.
NXP Semiconductors makes no representation or
warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of
their applications and products using NXP
Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or
customer product design. It is customer’s sole
responsibility to determine whether the NXP
Semiconductors pro du ct is su itable and fit for the
customer’s applications and products planned, as well as
for the planned application and use of customer’s third
party customer(s). Customers should provide appropriate
design and opera ting safeguards to minimize the risks
associated with their ap plications and produ cts.
NXP Semiconductors
Legal information
NXP Semiconductors does not accept any liability related
to any default, damage, cost s or problem which is based
on any weakness or default in the customer’s applications
or products, or the applic ation or use by customer’s th ird
party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and
products using NXP Semic on ductors products in or der to
avoid a default of the app lications and th e products or of
the application or use by cust omer’s third party
customer(s). NXP does not accept any liability in this
respect.
Limiting values Stress above one or more limiting
values (as defined in the Absolute Maximum Ratings
System of IEC 60134) will cause permanent damage to
the device. Limiting values are stress ratings only and
(proper) operat ion of the device at these or any other
conditions above those given in the Recommended
operating conditions section (if present) or the
Characteristics sections of this document is not warranted.
Constant or repeated exposure to limiting values will
permanently and irreversibly affect the quality and
reliability of the device.
Terms and conditions of commercial sale NXP
Semiconductors products are sold subje ct to the general
terms and conditio ns of commercial sale, as published at
http://www.nxp.com/profile/terms, unless other wise
agreed in a valid written individual agreeme n t. I n cas e an
individual agreeme nt is co nc luded only the terms and
conditions of the resp ective agreement shall apply. NXP
Semiconductors hereby expressly objects to apply ing the
customer’s general terms and conditions with regard to the
purchase of NXP Semicon ductors products by customer.
No offer to sell or license Nothing in this document
may be interpreted or construed as an offer to sell products
that is open for accep t ance or the grant, conveyance or
implication of any license under any copyrights, patents or
other industr ial or intellectual proper ty ri gh ts.
Export control This document as well as the item(s)
described herein may be subject to export control
regulations. Export might require a prior authorization from
national authorities.
Quick refer ence data The Quick reference data is an
extract of th e product data given in the Li miting values and
Characteristics sections of this document, and as su ch is
not complete, exhaus tive or legally binding.
Non-automotive qualified products Unless this data
sheet expressly states that this specific NXP
Semiconductors product is au tomotive qualified, the
product is not suitable fo r automotive use. It is neither
qualified nor te sted in accorda nce with automot ive testing
or application requirements. NXP Semiconductors accepts
no liability for inclusion and/or use of non-automotive
qualified prod ucts in automotive equipm en t or
applications.
In the event that customer uses the product for design-in
and use in automotive applications to automotive
specifications and standards, customer (a) shall use the
product without NXP Semiconductors’ warranty of the
product for suc h aut omo tive applications, us e and
specifications, and (b) whenever customer uses the
product for automotive applications beyond NXP
Semiconductors’ specifications such use shall be solely at
customer’s own ris k, an d (c) customer fully inde mnifies
NXP Semiconductors for an y liability, damages or failed
product clai ms r esult ing fr om cus to mer d esi gn an d us e of
the product for automotive ap plic ations beyond NXP
Semiconductors st andard warranty and NXP
Semiconductors’ product specifications.
Contact information
For additional information please visit: http://www.nxp.com
For sales offices addresses send e-ma il to: salesaddresses@nxp.com
Customer notification
This data sheet was changed to reflect the new company name NXP Semiconductor s, incl uding new legal definitions
and disclaimers. No chang es wer e made to the content, except for the legal definitions and discla imers.
© NXP B.V. 2011
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information prese nted in this d ocument doe s not form part of an y quotation or contract, is be lieved to b e accurate a nd relia ble and m ay be changed without
notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or
other industrial or intellectual property rights .
Printed in The Netherlands