

SPICE Device Model Si4884DY

Vishay Siliconix

N-Channel Reduced Qg, Fast Switching MOSFET

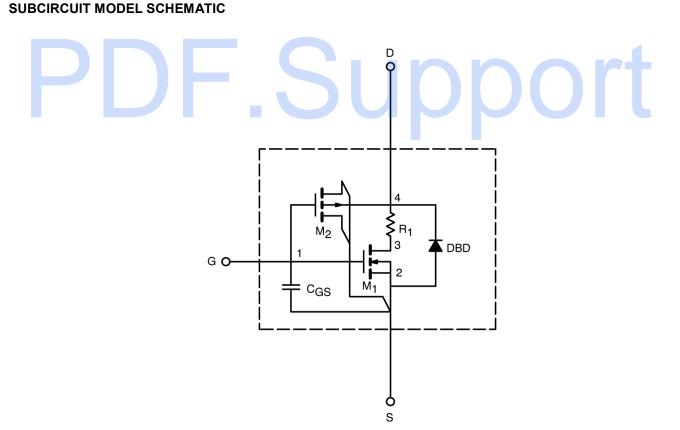
CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- · Level 3 MOS

- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range

intended as an exact physical interpretation of the device.

Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


A novel gate-to-drain feedback capacitance network is used to model

the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized

to provide a best fit to the measured electrical data and are not

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

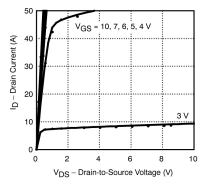
SPICE Device Model Si4884DY

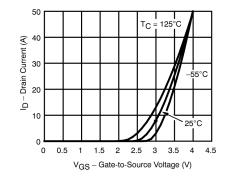
Vishay Siliconix

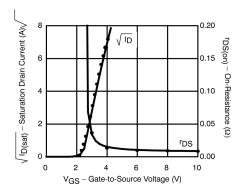
VISHAY	

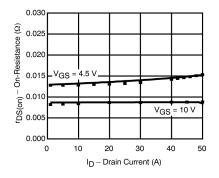
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)						
Parameter	Symbol	Test Conditions	Typical	Unit		
Static	· · ·					
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D = 250 μ A	1.73	V		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, \text{ V}_{GS}$ = 10 V	508	А		
Drain-Source On-State Resistance ^a	r _{DS(on)}	V_{GS} = 10 V, I _D = 12 A	0.0087	Ω		
Drain-Source On-State Resistance		V_{GS} = 4.5 V, I _D = 10 A	0.0132			
Forward Transconductance ^a	9 _{fs}	V_{DS} = 15 V, I_{D} = 12 A	34	S		
Diode Forward Voltage ^a	V _{SD}	$I_{\rm S}$ = 2.3 A, $V_{\rm GS}$ = 0 V	0.74	V		
Dynamic ^b						
Total Gate Charg	Qg		15.3	nC		
Gate-Source Charge	Q _{gs}	V_{DS} = 15 V, V_{GS} = 5 V, I_D = 12 A	5.8			
Gate-Drain Charge	Q _{gd}		4.8			
Turn-On Delay Time	t _{d(on)}		10			
Rise Time	me t_r V_{DD} = 15 V, R _L = 15 Ω		14			
Turn-Off Delay Time	t _{d(off)}	$I_{D}\cong1\;A,V_{GEN}=10\;V,R_{G}=6\;\Omega$	30	ns		
Fall Time	t _f		52			
Source-Drain Reverse Recovery Time	trr	I _F = 2.3 A, di/dt = 100 A/μs	44			

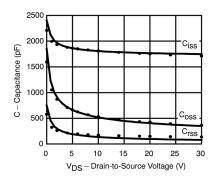
Notes


a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si4884DY


Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

Note: Dots and squares represent measured data.