Data Sheet No. PD60043K
Typical Connection
Features
Floating channel designed for bootstrap operation
Fully operational to +600V
Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 10 to 20V
Undervoltage lockout
5V Schmitt-triggered input logic
Matched propagation delay for both channels
Outputs in phase with inputs (IR2101/IR21014) or
out of phase with inputs (IR2102/IR21024)
Description
The IR2101/IR21014/IR2102/IR21024 are high voltage,
high speed power MOSFET and IGBT dr ivers with in-
dependent high and low side referenced output chan-
nels. Proprietary HVIC and latch immune CMOS tech-
nologies enable ruggedized monolithic construction. The
logic input is compatible with standard CMOS or LSTTL
output. The output drivers feature a high pulse current
buff er stage designed for minimum driver cross-conduc-
tion. The floating channel can be used to drive an N-
channel power MOSFET or IGBT in the high side con-
figuration which operates up to 600 volts.
HIGH AND LOW SIDE DRIVER
Packages
Product Summary
VOFFSET 600V max.
IO+/- 130 mA / 270 mA
VOUT 10 - 20V
ton/off (typ.) 160 & 150 ns
Delay Matching 50 ns
VCC VB
VS
HO
LOCOM
HIN
LIN
LIN
HIN
up to 600V
TO
LOAD
VCC
VCC VB
VS
HO
LOCOM
HIN
LIN
LIN
HIN
up to 600V
TO
LOAD
VCC
IR2101
IR2102
IR2101/IR21014
IR2102/IR21024
8 Lead SOIC 14 Lead SOIC
14 Lead PDIP
8 Lead PDIP
2
IR2101/IR21014/IR2102/IR21024
www.irf.com
Symbol Definition Min. Max. Units
VBHigh side floating supply voltage -0.3 625
VSHigh side floating supply offset voltage VB - 25 VB + 0.3
VHO High side floating output voltage V S - 0.3 VB + 0.3
VCC Low side and logic fixed supply voltage -0.3 25
VLO Low side output voltage -0.3 VCC + 0.3
VIN Logic input voltage (HIN & LIN) -0.3 VCC + 0.3
dVS/dt Allowable offset supply voltage transient 50 V/ns
PDPackage power dissipation @ TA +25° C (8 lead PDIP) 1.0
(8 lead SOIC) 0.625
(14 lead PDIP) 1.6
(14 lead SOIC) 1.0
RthJA Thermal resistance, junction to ambient (8 lead PDIP) 125
(8 lead SO I C) 200
(14 lead PDIP) 75
(14 lead SOIC) 120
TJJunction temperature 150
TSStorage temperature -55 150
TLLead temperature (soldering, 10 seconds) 300
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-
eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.
W
°C/W
V
Symbol Definition Min. Max. Units
VBHigh side floating supply absolute voltage VS + 10 VS + 20
VSHigh side floating supply offset voltage Note 1 600
VHO High side floating output voltage VSVB
VCC Low side and logic fixed supply voltage 10 20
VLO Low side output voltage 0 VCC
VIN Logic input voltage (HIN & LIN) (IR2101) & (HIN & LIN) (IR2102) 0 VCC
TAAmbient temperature -40 125
Note 1: Logic operational for VS of -5 to +600V. Logic state held for V S of -5V to -VBS.
Recommended Operating Conditions
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the
recommended conditions. The V S offset rating is tested with all supplies biased at 15V differential.
°C
V
°C
3
IR2101/IR21014/IR2102/IR21024
www.irf.com
Symbol Definition Min. T yp. Max. Units Test Conditions
VIH Logic “1” input voltage (IR2101)
Logic “0” input voltage (IR2102)
VIL Logic “0” input voltage (IR2101)
Logic “1”input voltage (IR2102)
VOH High level output voltage, VBIAS - VO 100 IO = 0A
VOL Low level output voltage, VO 100 IO = 0A
ILK Offset supply leakage current 50 VB = V S = 600V
IQBS Quiescent VBS supply current 30 55 VIN = 0V or 5V
IQCC Quiescent VCC supply current 150 270 VIN = 0V or 5V
IIN+ Logic “1” input bias current
IIN- Logic “0” input bias current
VCCUV+ VCC supply undervoltage positive going 8 8. 9 9.8
threshold
VCCUV- VCC supply under voltage negative going 7.4 8.2 9
threshold
IO+ Output high short circuit pulsed current 13 0 210 VO = 0V
VIN = Logic “1”
PW10 µs
IO- Output low shor t circuit pulsed current 270 36 0 VO = 15V
VIN = Logic “0”
PW10 µs
Symbol Definition Min. T yp. Max. Units T est Conditions
ton Tur n-on propagation delay 160 220 VS = 0V
toff Tur n-off propagation delay 150 220 VS = 600V
trTur n-on rise time 100 170 n s
tfTur n-off fall time 50 90
MT Delay matching, HS & LS turn-on/off 50
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to
COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25°C unless otherwise specified.
V
mA
3 VCC = 10V to 20V
V
0.8 VCC = 10V to 20V
mV
µA
3 10
1
VIN = 5V (IR2101)
VIN = 5V (IR2102)
VIN = 0V (IR2101)
VIN = 0V (IR2102)
4
IR2101/IR21014/IR2102/IR21024
www.irf.com
Functional Block Diagram
PULSE
GEN
HIN
UV
DETECT
LIN
COM
HO
VS
VCC
LO
VB
RQ
S
PULSE
FILTER
HV
LEVEL
SHIFT
IR2101/IR21014
IR2102/IR21024
PULSE
GEN
HIN
UV
DETECT
LIN
COM
HO
VS
VCC
LO
VB
RQ
S
PULSE
FILTER
HV
LEVEL
SHIFT
Vcc
Vcc
5
IR2101/IR21014/IR2102/IR21024
www.irf.com
Lead Definitions
Symbol Description
HIN Logic input for high side gate driver output (HO), in phase (IR2101)
HIN Logic input for high side gate driver output (HO), out of phase (IR2102)
LIN Logic input for low side gate driver output (LO), in phase (IR2101)
LIN Logic input for low side gate driver output (LO), out of phase (IR2102)
VBHigh side floating supply
HO High side gate drive output
VSHigh side floating supply return
VCC Low side and logic fixed supply
LO Low side gate drive output
COM Low side return
14 Lead PDIP 14 Lead SOIC
IR21014 IR21014S
Lead Assignments IR2101
8 Lead PDIP 8 Lead SOIC
IR2101 IR2101S
1
2
3
4
5
6
7
14
13
12
11
10
9
8
VCC
HIN
LIN
COM
LO
VB
HO
VS
1
2
3
4
5
6
7
14
13
12
11
10
9
8
VCC
HIN
LIN
COM
LO
VB
HO
VS
6
IR2101/IR21014/IR2102/IR21024
www.irf.com
8 Lead PDIP 8 Lead SOIC
IR2102 IR2102S
14 Lead PDIP 14 Lead SOIC
IR21024 IR21024S
1
2
3
4
5
6
7
14
13
12
11
10
9
8
VCC
HIN
LIN
COM
LO
VB
HO
VS
1
2
3
4
5
6
7
14
13
12
11
10
9
8
VCC
HIN
LIN
COM
LO
VB
HO
VS
Lead Assignments IR2102
7
IR2101/IR21014/IR2102/IR21024
www.irf.com
8 Lead PDIP 01-3003 01
8 Lead SOIC 01-0021 08
8
IR2101/IR21014/IR2102/IR21024
www.irf.com
01-3002 03
14 Lead PDIP
01-3063 00
14 Lead SOIC (narrow body)
9
IR2101/IR21014/IR2102/IR21024
www.irf.com
Figure 2. Switching Time Waveform Definitions
HIN
LIN
tr
ton tf
toff
HO
LO
50% 50%
90% 90%
10% 10%
HIN
LIN 50% 50%
Figure 1. Input/Output Timing Diagram
HIN
LIN
HO
LO
HIN
LIN
Figure 3. Delay Matching Waveform Definitions
HIN
LIN
HO
50% 50%
10%
LO
90%
MT
HOLO
MT
HIN
LIN 50% 50%
10
IR2101/IR21014/IR2102/IR21024
www.irf.com
Figure 6A. Turn-On Time vs Voltage Figure 6B. Turn-On Time vs Voltage
Figure 7A. Turn-Off Time vs Temperature Figure 7B. Turn-Off Time vs Voltage
Figure 9A. Turn-On Rise Time vs Temperature Figure 9B. Turn-On Rise Time vs Voltage
T emperature (°C) VBIAS Supply Voltage (V)
T emperature (°C) VBIAS Supply Voltage (V)
T emperature (°C) VBIAS Supply Voltage (V)
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Turn-On Delay Time (ns)
Max.
T
y
p.
0
100
200
300
400
500
10 12 14 16 18 20
Turn-On Dela y Time (ns)
Max.
Typ.
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Max.
Typ.
T urn-Off Delay T ime (ns)
0
100
200
300
400
500
10 12 14 16 18 20
Max.
Typ.
T urn-Off Delay T ime (ns)
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Max
.
Typ.
Turn-On Rise Time (ns)
0
100
200
300
400
500
10 12 14 16 18 20
Max.
Typ.
Turn-On Rise Time (ns)
11
IR2101/IR21014/IR2102/IR21024
www.irf.com
Figure 10A. Turn-Off Fall Time vs Temperature
Temperature (°C) VBIAS Supply Voltage (V)
Figure 10B. Turn-Off Fall Time vs Voltage
Temperature (°C)
Figure 12A. Logic "1" Input Voltage (IR2101)
Logic "0" Input Voltage (IR2102)
vs Temperature
Figure 12B. Logic "1" Input Voltage (IR2101)
Logic "0" Input Voltage (IR2102)
vs Voltage
Figure 13A. Logic "0" Input Voltage (IR2101)
Logic "1" Input Voltage (IR2102)
vs Temperature
Temperature (°C) Vcc Supply Voltage (V)
Figure 13B. Logic "0" Input Voltage (IR2101)
Logic "1" Input Voltage (IR2102)
vs Voltage
0
0.8
1.6
2.4
3.2
4
10 12 14 16 18 20
Input Voltage (V)
Max
.
0
0.8
1.6
2.4
3.2
4
-50 -25 0 25 50 75 100 125
Input V oltage (V)
Max
.
0
1
2
3
4
5
6
7
8
-50 -25 0 25 50 75 100 125
Input Voltage (V)
Min.
Turn-Of f Fall Time (ns)
0
50
100
150
200
-50 -25 0 25 50 75 100 125
Max
.
Typ.
0
50
100
150
200
10 12 14 16 18 20
Max.
Typ.
Turn-Of f Fall Time (ns)
0
1
2
3
4
5
6
7
8
10 12 14 16 18 20
Input Voltage (V)
Min.
Vcc Supply Voltage (V)
12
IR2101/IR21014/IR2102/IR21024
www.irf.com
T emperature (°C) Vcc Supply Voltage (V)
Figure 14A. High Level Output
vs Temperature Figure 14B. High Level Output vs Voltage
0
0.2
0.4
0.6
0.8
1
10 12 14 16 18 20
Max.
High Level Output V oltage (V)
Figure 15A. Low Level Output
vs Temperature
T emperature (°C) Vcc Supply Voltage (V)
Figure 15B. Low level Output vs Voltage
Offset Supply Leakage Current (µA)
T emperature (°C)
Figure 16A. Offset Supply Current
vs Temperature
Low Level Output Voltage (V)
0
0.2
0.4
0.6
0.8
1
10 12 14 16 18 20
Max.
Offset Supply Leakage Current (µA)
0
100
200
300
400
500
0 100 200 300 400 500 600
Max.
Figure 16B. Offset Supply Current
vs Voltage
VB Boost Voltage (V)
0
0.2
0.4
0.6
0.8
1
-50 -25 0 25 50 75 100 125
Max.
High Level Output V oltage (V)
0
0.2
0.4
0.6
0.8
1
-50 -25 0 25 50 75 100 125
Max.
Low Level Output Voltage (V)
0
100
200
300
400
500
-50-25 0 25 50 75100125
Max.
13
IR2101/IR21014/IR2102/IR21024
www.irf.com
Figure 17A. VBS Supply Current
vs Temperature Figure 17B. VBS Supply Current
vs Voltage
VBS Floating Supply Voltage (V)
Figure 18A. Vcc Supply Current
vs Temperature
Vcc Supply Current (µA)
Temperature (°C)
Temperature (°C)
Vcc Supply Current (µA)
Figure 18B. Vcc Supply Current
vs Voltage
Vcc Supply Voltage (V)
Figure 19A. Logic"1" Input Current
vs Temperature
T emperature (°C)
Logic 1” Input Current (µA)
Logic 1” Input Current (µA)
Figure 19B. Logic"1" Input Current
vs Voltage
VBS Supply Current (µA)
0
100
200
300
400
500
600
700
-50 -25 0 25 50 75 100 125
Max.
Typ.
0
100
200
300
400
500
600
700
10 12 14 16 18 20
Max.
Typ.
0
5
10
15
20
25
30
-50-25 0 25 50 75100125
Max.
Typ.
0
30
60
90
120
150
10 12 14 16 18 20
Max.
Typ.
VBS Supply Current (µA)
0
5
10
15
20
25
30
10 12 14 16 18 20
Max.
Typ.
Vcc Supply Voltage (V)
0
30
60
90
120
150
-50 -25 0 25 50 75 100 125
Max.
Typ.
14
IR2101/IR21014/IR2102/IR21024
www.irf.com
Logic “0” Input Current (µA)
Figure 20A. Logic "0" Input Current
vs Temperature
Temperature (°C) VCC Supply Voltage (V)
Figure 20B. Logic "0" Input Current
vs Voltage
0
1
2
3
4
5
10 12 14 16 18 20
Logic "0" Input Current (uA)
Max.
VCC UVLO Threshold +(V)
Figure 21A. Vcc Undervoltage Threshold(+)
vs Temperature
Temperature (°C)
Figure 21B. Vcc Undervoltage Threshold(-)
vs Temperature
VCC UVLO Threshold - (V)
Output Source Current (mA)
Figure 22A. Output Source Current
vs Temperature
Temperature (°C)
Figure 22B. Output Source Current
vs Voltage
Output Source Current (mA)
6
7
8
9
10
11
-50 -25 0 25 50 75 100 125
Max.
Min.
Typ.
6
7
8
9
10
11
-50-25 0 25 50 75100125
Max.
Min.
Typ.
Temperature (°C)
0
100
200
300
400
500
10 12 14 16 18 20
Typ.
Min.
VBIAS Supply Voltage (V)
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Typ.
Min.
0
1
2
3
4
5
-50 -25 0 25 50 75 100 125
Max.
15
IR2101/IR21014/IR2102/IR21024
www.irf.com
Output Sink Current (mA)
T emperature (°C)
Figure 23A. Output Sink Current
vs Temperature Figure 23B. Output Sink Current
vs Voltage
Output Sink Current (mA)
0
100
200
300
400
500
600
700
-50-25 0 25 50 75100125
Typ.
Min.
0
100
200
300
400
500
600
700
10 12 14 16 18 20
Typ.
Min.
VBIAS Supply Voltage (V)
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 322 3331
IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo, Japan 171-0021 Tel: 8133 983 0086
IR HONG KONG: Unit 308, #F, New East Ocean Centre, No. 9 Science Museum Road, Tsimshatsui East, Kowloon, Hong
Kong Tel: (852) 2803-7380
Data and specifications subject to change without notice. 11/29/99