09/30/10
www.irf.com 1
HEXFET® Power MOSFET
VDSS = 60V
RDS(on) = 12m
ID = 57A
This HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating. These features combine
to make this design an extremely efficient and
reliable device for use in a wide variety of
applications.
S
D
G
Description
l
Advanced Process Technology
l
Ultra Low On-Resistance
l
175°C Operating Temperature
l
Fast Switching
l
Repetitive Avalanche Allowed up to Tjmax
Features
IRFZ44VZPbF
IRFZ44VZSPbF
IRFZ44VZLPbF
D2Pak
IRFZ44VZSPbF
TO-220AB
IRFZ44VZPbF
TO-262
IRFZ44VZLPbF
Absolute Maximum Ratings
Parameter Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 10C Continuous Drain Current, VGS @ 10V A
IDM
P
u
l
se
d D
ra
i
n
C
urrent
c
PD @TC = 25°C Power Dissipation W
Linear Derating Factor W/°C
VGS Gate-to-Source Voltage V
EAS (Thermally limited)
Si
n
gl
e
P
u
l
se
A
va
l
anc
h
e
E
ner
gy
d
mJ
EAS (Tested )
Si
n
gl
e
P
u
l
se
A
va
l
anc
h
e
E
ner
gy T
este
d V
a
l
ue
h
IAR
A
va
l
anc
h
e
C
urrent
c
A
EAR
R
epet
i
t
i
ve
A
va
l
anc
h
e
E
ner
gy
g
mJ
TJ Operating Junction and
TSTG Storage Temperature Range °C
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
i
Thermal Resistance
Parameter Typ. Max. Units
RθJC Junction-to-Case –– 1.64 °C/W
RθCS Case-to-Sink, Flat Greased Surface
i
0.50 –––
RθJA Junction-to-Ambient
i
––– 62
RθJA Junction-to-Ambient (PCB Mount)
j
––– 40
-55 to + 175
300 (1.6mm from case )
10 lbf
y
in (1.1N
y
m)
92
0.61
± 20
Max.
57
40
230
110
73
See Fig.12a, 12b, 15, 16
l
Lead-Free
PD - 95947A
IRFZ44VZS/LPbF
2www.irf.com
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
V(BR)DSS Drain-to-Source Breakdown Voltage 60 ––– ––– V
V(BR)DSS
/
TJ Breakdown Voltage Temp. Coefficient ––– 0.061 ––– V/°C
RDS(on) Static Drain-to-Source On-Resistance –– 9.6 12 m
VGS(th) Gate Threshold Voltage 2.0 –– 4.0 V
gfs Forward Transconductance 25 ––– ––– V
IDSS Drain-to-Source Leakage Current ––– –– 20 µA
––– –– 250
IGSS Gate-to-Source Forward Leakage ––– ––– 200 nA
Gate-to-Source Reverse Leakage ––– –– -200
QgTotal Gate Charge ––– 43 65
Qgs Gate-to-Source Charge ––– 11 –– nC
Qgd Gate-to-Drain ("Miller") Charge ––– 18 ––
td(on) Turn-On Delay Time ––– 14 ––
trRise Time ––– 62 ––
td(off) Turn-Off Delay Time ––– 35 –– ns
tfFall Time ––– 38 ––
LDInternal Drain Inductance ––– 4.5 ––– Between lead,
nH 6mm (0.25in.)
LSInternal Source Inductance ––– 7.5 ––– from package
and center of die contact
Ciss Input Capacitance ––– 1690 ––
Coss Output Capacitance ––– 270 –––
Crss Reverse Transfer Capacitance ––– 130 ––– pF
Coss Output Capacitance ––– 1870 –––
Coss Output Capacitance ––– 260 –––
Coss eff. Effective Output Capacitance ––– 510 ––
Source-Drain Ratin
s and Characteristics
Parameter Min. Typ. Max. Units
ISContinuous Source Current ––– ––– 57
(Body Diode) A
ISM Pulsed Source Current ––– ––– 230
(Body Diode)
c
VSD Diode Forward Voltage ––– ––– 1.3 V
trr Reverse Recovery Time ––– 23 35 ns
Qrr Reverse Recovery Charge ––– 17 26 nC
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
VGS = 0V, VDS = 48V, ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 48V
f
VGS = 10V
e
VDD = 30V
ID = 34A
RG = 12
TJ = 25°C, IS = 34A, VGS = 0V
e
TJ = 25°C, IF = 34A, VDD = 30V
di/dt = 100As
e
Conditions
VGS = 0V, ID = 25A
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 34A
e
VDS = VGS, ID = 250µA
VDS = 60V, VGS = 0V
VDS = 60V, VGS = 0V, TJ = 125°C
MOSFET symbol
showing the
integral reverse
p-n junction diode.
VDS = 25V, ID = 34A
ID = 34A
VDS = 48V
Conditions
VGS = 10V
e
VGS = 0V
VDS = 25V
ƒ = 1.0MHz
VGS = 20V
VGS = -20V
S
D
G
IRFZ44VZS/LPbF
www.irf.com 3
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance
Vs. Drain Current
0 102030405060
ID, Drain-to-Source Current (A)
0
10
20
30
40
50
60
Gfs, Forward Transconductance (S)
TJ = 25°C
TJ = 175°C
VDS = 15V
380µs PULSE WIDTH
4.0 5.0 6.0 7.0 8.0 9.0
VGS, Gate-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (Α)
VDS = 25V
60µs PULSE WIDTH
TJ = 25°C
TJ = 175°C
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
60µs PULSE WIDTH
Tj = 25°C4.5V
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
60µs PULSE WIDTH
Tj = 175°C
4.5V
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
IRFZ44VZS/LPbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
110 100
VDS, Drain-to-Source Voltage (V)
0
500
1000
1500
2000
2500
3000
C, Capacitance (pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0 102030405060
QG Total Gate Charge (nC)
0
4
8
12
16
20
VGS, Gate-to-Source Voltage (V)
VDS= 48V
VDS= 30V
VDS= 12V
ID= 34A
FOR TEST CIRCUIT
SEE FIGURE 13
0.2 0.6 1.0 1.4 1.8
VSD, Source-toDrain Voltage (V)
0.1
1.0
10.0
100.0
1000.0
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
1 10 100 1000
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
IRFZ44VZS/LPbF
www.irf.com 5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10. Normalized On-Resistance
Vs. Temperature
25 50 75 100 125 150 175
TJ , Junction Temperature (°C)
0
10
20
30
40
50
60
ID , Drain Current (A)
-60 -40 -20 020 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 34A
VGS = 10V
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.960 0.00044
0.680 0.00585
τJ
τJ
τ1
τ1
τ2
τ2
R1
R1R2
R2
τ
τC
Ci i/Ri
Ci= τi/Ri
IRFZ44VZS/LPbF
6www.irf.com
Q
G
Q
GS
Q
GD
V
G
Charge
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
Fig 14. Threshold Voltage Vs. Temperature
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
25 50 75 100 125 150 175
Starting TJ, Junction Temperature (°C)
0
50
100
150
200
250
300
EAS, Single Pulse Avalanche Energy (mJ)
I D
TOP 3.8A
5.0A
BOTTOM 34A
-75 -50 -25 025 50 75 100 125 150 175
TJ , Temperature ( °C )
1.0
2.0
3.0
4.0
VGS(th) Gate threshold Voltage (V)
ID = 250µA
1K
VCC
DUT
0
L
IRFZ44VZS/LPbF
www.irf.com 7
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Fig 16. Maximum Avalanche Energy
Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
0.1
1
10
100
1000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
0.01
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
20
40
60
80
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1% Duty Cycle
ID = 34A
IRFZ44VZS/LPbF
8www.irf.com
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
VGS=10V
VDD
ISD
Driver Gate Drive
D.U.T. ISD Waveform
D.U.T. VDS Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
VDS
90%
10%
VGS
t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
Fig 18a. Switching Time Test Circuit
Fig 18b. Switching Time Waveforms
IRFZ44VZS/LPbF
www.irf.com 9
TO-220AB Part Marking Information
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
LOT CODE 1789
E XAMPLE: T HIS IS AN IRF 1010
Note: "P" in assembly line pos ition
i ndi cates "L ead - F ree"
IN THE ASSEMBLY LINE "C"
AS S EMBLED ON WW 19, 2000
INTERNAT IONAL PART NUMBER
RECTIFIER
LOT CODE
ASSEMBLY
LOGO
YE AR 0 = 2000
DAT E CODE
WE E K 19
LINE C
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
IRFZ44VZS/LPbF
10 www.irf.com
D2Pak (TO-263AB) Part Marking Information
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
DAT E CODE
YEAR 0 = 2000
WE E K 02
A = AS S E MB L Y S I T E CODE
RECTIFIER
INTERNATIONAL PART NUMBER
P = DE S IGNAT E S L E AD - F R E E
PRODUCT (OPTIONAL)
F530S
IN THE ASSEMBLY LINE "L"
AS SEMB LE D ON WW 02, 2000
THIS IS AN IRF530S WITH
LOT CODE 8024 INT E RNAT IONAL
LOGO
RECT IFIER
LOT CODE
AS S E MB L Y YEAR 0 = 2000
PART NUMBER
DAT E CODE
LINE L
WE E K 02
OR
F530S
LOGO
ASSEMBLY
LOT CODE
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
IRFZ44VZS/LPbF
www.irf.com 11
TO-262 Part Marking Information
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
LOGO
RECTIFIER
INT ERNATIONAL
LOT CODE
ASSEMBLY
LOGO
RECTIFIER
INT ERNAT IONAL
DAT E CODE
WEE K 19
YEAR 7 = 1997
PART NUMBER
A = AS S E MB L Y S IT E CODE
OR
PRODUCT (OPTIONAL)
P = DE S I GNAT E S L E AD- F R E E
EXAMPLE : T HIS IS AN IRL3103L
LOT CODE 1789
ASSEMBLY
PART NUMBER
DATE CODE
WEEK 19
LINE C
LOT CODE
YEAR 7 = 1997
AS SE MBLE D ON WW 19, 1997
IN THE ASSEMBLY LINE "C"
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
IRFZ44VZS/LPbF
12 www.irf.com
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 09/2010
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Limited by TJmax, starting TJ = 25°C, L = 0.12mH
RG = 25, IAS = 34A, VGS =10V. Part not
recommended for use above this value.
Pulse width 1.0ms; duty cycle 2%.
Coss eff. is a fixed capacitance that gives the
same charging time as Coss while VDS is rising
from 0 to 80% VDSS .
Notes:
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
This value determined from sample failure population. 100%
tested to this value in production.
This is only applied to TO-220AB pakcage.
This is applied to D2Pak, when mounted on 1" square PCB (FR-
4 or G-10 Material). For recommended footprint and soldering
techniques refer to application note #AN-994.
3
4
4
TRR
FEED DIRECTION
1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
TRL
FEED DIRECTION
10.90 (.429)
10.70 (.421)
16.10 (.634)
15.90 (.626)
1.75 (.069)
1.25 (.049)
11.60 (.457)
11.40 (.449) 15.42 (.609)
15.22 (.601)
4.72 (.136)
4.52 (.178)
24.30 (.957)
23.90 (.941)
0.368 (.0145)
0.342 (.0135)
1.60 (.063)
1.50 (.059)
13.50 (.532)
12.80 (.504)
330.00
(14.173)
MAX.
27.40 (1.079)
23.90 (.941)
60.00 (2.362)
MIN.
30.40 (1.197)
MAX.
26.40 (1.039)
24.40 (.961)
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
D2Pak Tape & Reel Infomation