IKA06N60T
TrenchStop®Series
IFAG IPC TD VLS 1 Rev. 2.4 12.06.2013
Low Loss DuoPack : IGBT in TrenchStop®and Fieldstop technology with soft,
fast recovery anti-parallel Emitter Controlled HE diode
Features
Very low VCE(sat) 1.5 V (typ.)
Maximum Junction Temperature 175 °C
Short circuit withstand time 5s
TrenchStop®and Fieldstop technology for 600 V applications
offers :
- very tight parameter distribution
- high ruggedness, temperature stable behavior
- very high switching speed
Low EMI
Very soft, fast recovery anti-parallel Emitter Controlled HE diode
Qualified according to JEDEC1for target applications
Pb-free lead plating; RoHS compliant
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Applications
Washing Machine
Inverter and Variable Speed Drive
Type VCE ICVCE(sat),Tj=25°C Tj,max Marking Code Package
IKA06N60T 600V 6A 1.5V 175CK06T60 PG-TO-220-3-31 / -111
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage VCE 600 V
DC collector current, limited by Tjmax
TC= 25C
TC= 100C
IC10
6.2
A
Pulsed collector current, tplimited by Tjmax ICpuls 18
Turn off safe operating area VCE 600V, Tj175C-18
Diode forward current, limited by Tjmax
TC= 25C
TC= 100C
IF10.2
6.5
Diode pulsed current, tplimited by Tjmax IFpul s 18
Gate-emitter voltage VGE 20 V
Short circuit withstand time2)
VGE = 15V, VCC 400V, Tj150CtSC 5s
Power dissipation
TC= 25CPtot 28 W
Operating junction temperature Tj-40...+175 C
Storage temperature Tstg -55...+175
Isolation voltage Visol 2500 Vrms
1J-STD-020 and JESD-022
2) Allowed number of short circuits: <1000; time between short circuits: >1s.
G
C
E
PG-TO-220-3-31 / -111
(FullPAK)
IKA06N60T
TrenchStop®Series
IFAG IPC TD VLS 2 Rev. 2.4 12.06.2013
Thermal Resistance
Parameter Symbol Conditions Max. Value Unit
Characteristic
IGBT thermal resistance,
junction case RthJC 5.3 K/W
Diode thermal resistance,
junction case RthJCD 6.5
Thermal resistance,
junction ambient RthJA 80
Electrical Characteristic, at Tj= 25 C, unless otherwise specified
Parameter Symbol Conditions Value Unit
min. typ. max.
Static Characteristic
Collector-emitter breakdown voltage V(BR)CES VGE=0V,
IC=0.25mA 600 - - V
Collector-emitter saturation voltage VCE(sat) VGE = 15V, IC=6A
Tj=25C
Tj=175C-
-1.5
1.8 2.05
Diode forward voltage VFVGE=0V, IF=6A
Tj=25C
Tj=175C-
-1.6
1.6 2.05
-
Gate-emitter threshold voltage VGE(th) IC=0.18mA,
VCE=VGE
4.1 4.6 5.7
Zero gate voltage collector current ICES VCE=600V,VGE=0V
Tj=25C
Tj=175C
-
--
-40
700
µA
Gate-emitter leakage current IGES VCE=0V,VGE=20V - - 100 nA
Transconductance gfs VCE=20V, IC=6A - 3.6 - S
Integrated gate resistor RGint none Ω
Dynamic Characteristic
Input capacitance Ciss VCE=25V,
VGE=0V,
f=1MHz
- 368 - pF
Output capacitance Coss - 28 -
Reverse transfer capacitance Crss - 11 -
Gate charge QGate VCC=480V, IC=6A
VGE=15V - 42 - nC
Internal emitter inductance
measured 5mm (0.197 in.) from case LE- 7 - nH
Short circuit collector current1) IC(SC) VGE=15V,tSC5s
VCC = 400V,
Tj= 25C
- 55 - A
1) Allowed number of short circuits: <1000; time between short circuits: >1s.
IKA06N60T
TrenchStop®Series
IFAG IPC TD VLS 3 Rev. 2.4 12.06.2013
Switching Characteristic, Inductive Load, at Tj=25 C
Parameter Symbol Conditions Value Unit
min. Typ. max.
IGBT Characteristic
Turn-on delay time td(on) Tj=25C,
VCC=400V,IC=6A,
VGE=0/15V,
RG=23,
L
2)=60nH,
C
2)=40pF
Energy losses include
“tail” and diode
reverse recovery.
- 9.4 - ns
Rise time tr- 5.6 -
Turn-off delay time td(off) - 130 -
Fall time tf- 58 -
Turn-on energy Eon - 0.09 - mJ
Turn-off energy Eoff - 0.11 -
Total switching energy Ets - 0.2 -
Anti-Parallel Diode Characteristic
Diode reverse recovery time trr Tj=25C,
VR=400V, IF=6A,
diF/dt=550A/s
- 123 - ns
Diode reverse recovery charge Qrr - 190 - nC
Diode peak reverse recovery current Irrm - 5.3 - A
Diode peak rate of fall of reverse
recovery current during tb
dirr/dt - 450 - A/s
Switching Characteristic, Inductive Load, at Tj=175 C
Parameter Symbol Conditions Value Unit
min. typ. max.
IGBT Characteristic
Turn-on delay time td(on) Tj=175C,
VCC=400V,IC=6A,
VGE=0/15V,
RG= 23
L
1)=60nH,
C
1)=40pF
Energy losses include
“tail” and diode
reverse recovery.
- 8.8 - ns
Rise time tr- 8.2 -
Turn-off delay time td(off) - 165 -
Fall time tf- 84 -
Turn-on energy Eon - 0.14 - mJ
Turn-off energy Eoff - 0.18 -
Total switching energy Ets - 0.335 -
Anti-Parallel Diode Characteristic
Diode reverse recovery time trr Tj=175C
VR=400V, IF=6A,
diF/dt=550A/s
- 180 - ns
Diode reverse recovery charge Qrr - 500 - nC
Diode peak reverse recovery current Irrm - 7.6 - A
Diode peak rate of fall of reverse
recovery current during tb
dirr/dt - 285 - A/s
2) Leakage inductance L
and Stray capacity Cdue to dynamic test circuit in Figure E.
1) Leakage inductance L
and Stray capacity Cdue to dynamic test circuit in Figure E.
IKA06N60T
TrenchStop®Series
IFAG IPC TD VLS 4 Rev. 2.4 12.06.2013
IC,COLLECTOR CURRENT
10Hz 100Hz 1kHz 10kHz 100kHz
0A
5A
10A
15A
TC=110°C
TC=80°C
IC,COLLECTOR CURRENT
1V 10V 100V 1000V
0,1A
1A
10A
DC
10µs
tp=1µs
50µs
5ms
5µs
500µs
f,SWITCHING FREQUENCY VCE,COLLECTOR-EMITTER VOLTAGE
Figure
1
.
Collector current as a function of
switching frequency
(Tj175C, D = 0.5, VCE = 400V,
VGE = 0/+15V, RG= 23)
Figure
2
.
Safe operating area
(D = 0, TC= 25C,
Tj175C;VGE=15V)
Ptot,POWER DISSIPATION
25°C 50°C 75°C 100°C 125°C 150°C
0W
5W
10W
15W
20W
25W
IC,COLLECTOR CURRENT
25°C 7C 12C
0A
2A
4A
6A
8A
TC,CASE TEMPERATURE TC,CASE TEMPERATURE
Figure
3
.
Power dissipation as a function of
case temperature
(Tj175C)
Figure
4
.
Collector current as a function of
case temperature
(VGE 15V, Tj175C)
I
I
IKA06N60T
TrenchStop®Series
IFAG IPC TD VLS 5 Rev. 2.4 12.06.2013
IC,COLLECTOR CURRENT
0V 1V 2V 3V
0A
3A
6A
9A
12A
15A
15V
7V
9V
11V
13V
VGE=20V
IC,COLLECTOR CURRENT
0V 1V 2V 3V
0A
3A
6A
9A
12A
15A
15V
7V
9V
11V
13V
VGE=20V
VCE,COLLECTOR-EMITTER VOLTAGE VCE,COLLECTOR-EMITTER VOLTAGE
Figure
5
.
Typical output characteristic
(Tj= 25°C)
Figure
6
.
Typical output characteristic
(Tj= 175°C)
IC,COLLECTOR CURRENT
0V 2V 4V 6V 8V 10V
0A
3A
6A
9A
12A
15A
25°C
TJ=175°C
VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE
-50°C 0°C 50°C 100°C
0,0V
0,5V
1,0V
1,5V
2,0V
2,5V
3,0V
IC=6A
IC=12A
IC=3A
VGE,GATE-EMITTER VOLTAGE TJ,JUNCTION TEMPERATURE
Figure
7
.
Typical transfer characteris
tic
(VCE=20V)
Figure
8
.
Typical collector
-
emitter
saturation voltage as a function of
junction temperature
(VGE = 15V)
IKA06N60T
TrenchStop®Series
IFAG IPC TD VLS 6 Rev. 2.4 12.06.2013
t, SWITCHING TIMES
0A 3A 6A 9A 12A 15A
1ns
10ns
100ns
tr
td(on)
tf
td(off)
t, SWITCHING TIMES
    
1ns
10ns
100ns
tf
tr
td(off)
td(on)
IC,COLLECTOR CURRENT RG,GATE RESISTOR
Figure
9
.
Typical switching times as a
function of collector current
(inductive load, TJ=175°C,
VCE = 400V, VGE = 0/15V, RG= 23Ω,
Dynamic test circuit in Figure E)
Figure
10
.
Typical switching times as a
function of gate resistor
(inductive load, TJ=175°C,
VCE = 400V, VGE = 0/15V, IC= 6A,
Dynamic test circuit in Figure E)
t, SWITCHING TIMES
50°C 100°C 150°C
1ns
10ns
100ns
tr
tf
td(on)
td(off)
VGE(th),GATE-EMITT TRSHOLD VOLTAGE
-50°C 0°C 50°C 100°C 150°C
0V
1V
2V
3V
4V
5V
6V
min.
typ.
max.
TJ,JUNCTION TEMPERATURE TJ,JUNCTION TEMPERATURE
Figure
11
.
Typical switching times as a
function of junction temperature
(inductive load, VCE = 400V,
VGE = 0/15V, IC= 6A, RG= 23Ω,
Dynamic test circuit in Figure E)
Figure
12
.
Gate
-
emitter threshold voltage as
a function of junction temperature
(IC= 0.18mA)
IKA06N60T
TrenchStop®Series
IFAG IPC TD VLS 7 Rev. 2.4 12.06.2013
E,SWITCHING ENERGY LOSSES
0A 2A 4A 6A 8A 10A
0,0 mJ
0,1 mJ
0,2 mJ
0,3 mJ
0,4 mJ
0,5 mJ
0,6 mJ
Ets*
Eon*
*) Eon and Ets include losses
due to diode recovery
Eoff
E,SWITCHING ENERGY LOSSES
   
0,0 mJ
0,1 mJ
0,2 mJ
0,3 mJ
0,4 mJ
Ets*
Eon*
*) Eon and Ets include losses
due to diode recovery
Eoff
IC,COLLECTOR CURRENT RG,GATE RESISTOR
Figure
13
.
Typical switching energy losses
as a function of collector current
(inductive load, TJ=175°C,
VCE=400V, VGE=0/15V, RG=23Ω,
Dynamic test circuit in Figure E)
Figu
re
14
. Typical switching energy losses
as a function of gate resistor
(inductive load, TJ=175°C,
VCE = 400V, VGE = 0/15V, IC= 6A,
Dynamic test circuit in Figure E)
E,SWITCHING ENERGY LOSSES
50°C 100°C 150°C
0,0mJ
0,1mJ
0,2mJ
0,3mJ
0,4mJ
Ets*
Eon*
*) Eon and Ets include losses
due to diode recovery
Eoff
E,SWITCHING ENERGY LOSSES
200V 300V 400V 500V
0,0mJ
0,1mJ
0,2mJ
0,3mJ
0,4mJ
0,5mJ
Ets*
Eon*
*) Eon and Ets include losses
due to diode recovery
Eoff
TJ,JUNCTION TEMPERATURE VCE,COLLECTOR-EMITTER VOLTAGE
Figure
15
.
Typical switching energy losses
as a function of junction
temperature
(inductive load, VCE=400V,
VGE = 0/15V, IC= 6A, RG= 23Ω,
Dynamic test circuit in Figure E)
Figure
16
.
Typical switching energy losses
as a function of collector emitter
voltage
(inductive load, TJ= 175°C,
VGE = 0/15V, IC= 6A, RG= 23Ω,
Dynamic test circuit in Figure E)
IKA06N60T
TrenchStop®Series
IFAG IPC TD VLS 8 Rev. 2.4 12.06.2013
VGE,GATE-EMITTER VOLTAGE
0nC 10nC 20nC 30nC 40nC 50nC
0V
5V
10V
15V
480V
120V
c, CAPACITANCE
0V 10V 20V
10pF
100pF
1nF
Crss
Coss
Ciss
QGE,GATE CHARGE VCE,COLLECTOR-EMITTER VOLTAGE
Figure
17
.
Typical gate charge
(IC=6 A)
Figure
18
.
Typical capacitance as a function
of collector-emitter voltage
(VGE=0V, f= 1 MHz)
I
C(sc)
, short circuit COLLECTOR CURRENT
12V 14V 16V 18V
0A
20A
40A
60A
80A
tSC,SHORT CIRCUIT WITHSTAND TIME
10V 11V 12V 13V 14V
0µs
2µs
4µs
6µs
8µs
10µs
12µs
VGE,GATE-EMITTETR VOLTAGE VGE,GATE-EMITETR VOLTAGE
Figure
19
.
Typical short circuit collector
current as a function of gate-
emitter voltage
(VCE 400V, Tj150C)
Figure
20
.
Short circuit withstand time as a
function of gate-emitter voltage
(VCE=600V,start at TJ=25°C,
TJmax<150°C)
IKA06N60T
TrenchStop®Series
IFAG IPC TD VLS 9 Rev. 2.4 12.06.2013
ZthJC,TRANSIENT THERMAL RESISTANCE
10µs
100µs
1ms
10ms
100ms
1s
10s
10-1K/W
100K/W
single pulse
0.01
0.02
0.05
0.1
0.2
D=0.5
ZthJC,TRANSIENT THERMAL RESISTANCE
10µs
100µs
1ms
10ms
100ms
1s
10s
10-2K/W
10-1K/W
100K/W
single pulse
0.01
0.02
0.05
0.1
0.2
D=0.5
tP,PULSE WIDTH tP,PULSE WIDTH
Figure
21
.
IGBT transient thermal resistance
(D = tp/T)
Figure
22
.
Diode transient thermal
impedance as a function of pulse
width
(D=tP/T)
trr,REVERSE RECOVERY TIME
200A/µs 400A/µs 600A/µs 800A/µs
0ns
50ns
100ns
150ns
200ns
250ns
TJ=2C
TJ=175°C
Qrr,REVERSE RECOVERY CHARGE
200A/µs 400As 600As 800As
0,0µC
0,1µC
0,2µC
0,3µC
0,4µC
0,5µC
TJ=25°C
TJ=175°C
diF/dt,DIODE CURRENT SLOPE diF/dt,DIODE CURRENT SLOPE
Figure
23
.
Typical reverse recovery time as
a function of diode current slope
(VR= 400V, IF= 6A,
Dynamic test circuit in Figure E)
Figure
24
.
Typical reverse recovery charge
as a function of diode current
slope
(VR= 400V, IF= 6A,
Dynamic test circuit in Figure E)
R,(K /W )
,(s)
0.381 1.867*10
-
2
6.53*10
2.57 1.350
0.645 2.208*10
-
3
1.454 5.474*10
-
4
0.062 5.306*10
-
5
0.186 5.926*10
-
1
C
1
=
1
/
R
1
R1R2
C
2
=
2
/
R
2
R,(K /W )
,(s)
0.403 1.773*10
-
2
6.53*10
2.57 1.346
0.938 1.956*10
-
3
2.33 4.878*10
-
4
0.071 4.016*10
-
5
175 5.684*10
-
1
C
1
=
1
/
R
1
R1R2
C
2
=
2
/
R
2
IKA06N60T
TrenchStop®Series
IFAG IPC TD VLS 10 Rev. 2.4 12.06.2013
Irr,REVERSE RECOVERY CURRENT
200A/µs 400A/µs 600A/µs 800A/µs
0A
2A
4A
6A
8A
TJ=25°C
TJ=175°C
di
rr
/dt
,
DIODE PEAK RATE OF FALL
OF REVERSE RECOVERY
CURRENT
200A/µs 400A/µs 600As 800A/µs
0A/µs
-100A/µs
-200A/µs
-300A/µs
-400A/µs
-500A/µs TJ=25°C
TJ=175°C
diF/dt,DIODE CURRENT SLOPE diF/dt,DIODE CURRENT SLOPE
Figure
25
.
Typical reverse recovery current
as a function of diode current
slope
(VR= 400V, IF= 6A,
Dynamic test circuit in Figure E)
Figure
26
.
Typical diode peak rate of fall of
reverse recovery current as a
function of diode current slope
(VR= 400V, IF= 6A,
Dynamic test circuit in Figure E)
IF,FORWARD CURRENT
0,0V 0,5V 1,0V 1,5V 2,0V
0A
2A
4A
6A
8A
10A
25°C
TJ=175°C
VF,FORWARD VOLTAGE
0°C 50°C 100°C 150°C
0,0V
0,5V
1,0V
1,5V
2,0V
6A
IF=12A
3A
VF,FORWARD VOLTAGE TJ,JUNCTION TEMPERATURE
Figure
27
.
Typical diode forward current as
a function of forward voltage
Figure
28
.
Typical d
iode forward voltage as a
function of junction temperature
IKA06N60T
TrenchStop®Series
IFAG IPC TD VLS 11 Rev. 2.4 12.06.2013
Please refer to mounting instructions
PG-TO220-3-31/ -111
IKA06N60T
TrenchStop®Series
IFAG IPC TD VLS 12 Rev. 2.4 12.06.2013
I
r
r
m
90%
Ir r m
10%
Ir r m
di /dt
F
tr r
IF
i,v
t
QSQF
tStF
VR
di /dt
r r
Q =Q Q
r r S F
+
t =t t
r r S F
+
Figure C. Definition of diodes
switching characteristics
p(t)
1
2
n
T
(
t
)
j
1
1
2
2
n
n
T
C
r r
r
r
rr
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Leakage inductance L
=60nH
and Stray capacity C
=40pF.
Figure A. Definition of switching times
Figure B. Definition of switching losses
IKA06N60T
TrenchStop®Series
IFAG IPC TD VLS 13 Rev. 2.4 12.06.2013
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2013 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or
any information regarding the application of the device, Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the
types in question, please contact the nearest Infineon Technologies Office.
The Infineon Technologies component described in this Data Sheet may be used in life-support devices or
systems and/or automotive, aviation and aerospace applications or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the
failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or
effectiveness of that device or system. Life support devices or systems are intended to be implanted in the
human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable
to assume that the health of the user or other persons may be endangered.