Standard Power MOSFETs File Number 2309 IRF540, IRF541, IRF542, IRF543 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 24 Aand 27A,60V-100V N-CHANNEL ENHANCEMENT MODE Sostom = 0.085 QO and 0.11 2 5 Features: s SOA is power-dissipation limited a Nanosecond switching speeds a Linear transfer characteristics 6 a High input impedance m Majority carrier device $s 92CS$-33741 TERMINAL DIAGRAM The IRF540, IRF541, IRF542, and IRF543 are n-channel enhancement-mode silicon-gate power field-effect transis- TERMINAL DESIGNATION tors designed for applications such as switching regula- tors, switching converters, motor drivers, relay drivers, and SOURCE drivers for high-power bipolar switching transistors requir- S | ing high speed and low gate-drive power. These types can (ANGE) DRAIN be operated directly from integrated circuits. QC Pets The IRF-types are supplied in the JEDEC TO-220AB plastic Ss Dare package. TOP VIEW 9208-39526 JEDEC TO-220AB Absolute Maximum Ratings Parameter IRF540 iRF541 (RF542 (RF543 Units Vos Drain - Source Voltage 100 60 100 60 Vv VpGR Drain - Gate Voltage (Rgg = 20 kf) 100 60 100 60 Vv Ip @ Te = 25C _ Continuous Drain Current 27 27 24 24 A Ip @ Tc = 100C Continuous Drain Current 17 17 15 15 A lom Pulsed Drain Current 108 108 96 96 A | Ves Gate - Source Voltage 20 v Pp @Tc = 25C Max. Power Dissipation 125 (See Fig. 14) Ww Linear Derating Factor 1.0 (See Fig. 14) wed ILM Inductive Current, Clamped (See Fig. 15 and 16) L = 100zH A 108 I 108 | 96 | 96 Teg Seas ooo e Range ~55 to 150 c Lead Temperature 300 (0.063 in. (1.6mm) from case for 10s) C 3-149 Standard Power MOSFETs IRF540, IRF541, IRF542, IRF543 Electrical Characteristics @T = 25C (Unless Otherwise Specified) 3-150 Parameter Type Min. Typ. | Max. Units Test Conditions BVpss_ Drain - Source Breakdown Voltage IRF540 _ _ ne = ines42 | 100 Vv Vig = OV IRF541 = inF543 | 8 ~ 'o = 250A VGSith) Gate Threshold Voltage ALL 2.0 - 4.0 v Vos = Vos. Ip = 250uA igsg _ Gate-Source Leakage Forward ALL = - 500 na Vag = 20V less Gate-Source Leakage Reverse ALL - |-500 nA Vgg = -20V | GSS 'pss Zero Gate Voltage Drain Current ALL = _ 250 nA Vps = Max. Rating. Vgs = OV = = 1000 HA Vos = Max. Rating x 0.8, Vag = OV. Tc = 125C IDion) On-State Drain Current @ IRF540 27 = ~ A IRF 544 Vos? 4 R Veg = 10V DS ? 'Dion) * DSion) max." GS IRF542 | 3, _ _ A IRF543 Rosion) Static Drain-Source On-State IRF540 Resistance iRF541 ~ 0.07 | 0.085 a Vee = 10V.In = 1A IRF642 | _joosto11] a eee (RF543 . . Sis Forward Transconductance @ ALL 6.0 10 - $ io) Vos? 'bion) * Boston} max. (p= 15A Ciss Input Capacitance ALL = 1275) pF V@s = OV, Vpg = 25V, f = 1.0 MHz Coss Output Capacitance ALL - 550 = pF See Fig. 10 Crsg Reverse Transfer Capacitance ALL - 160 _ pF tdion) _ Turn-On Delay Time ALL - 16 30 ns Vop * 30V, tp = 154, Z, = 4.70 ty Rise Time ALL - 27 60 ns See Fig. 17 tgtott) Turn-Off Delay Time ALL - 38 80 ns (MOSFET switching times are essentially tf Fall Time ALL _ 14 30 ns independent of operating temperature.) a Total Gate Charge v = 10V, I, = 34A,V = 0,8 Max. Rating. g - GS D DS {Gate-Source Plus Gate-Drain} ALL 38 60 ne See Fig. 18 for test circuit. (Gate charge is essentially Ags Gate-Source Charge ALL _ 17 26 nc independent of operating temperature.) Qgq Gate-Drain (Miller) Charge ALL - 21 32 nc Lo Internal Drain Inductance - 3.5 - nH Measured from the Modified MOSFET contact screw on tab symbol showing the to center of die. internal device ALL inductances. _ 4.5 - nH Measured from the drain lead, 6mm (0.25 in.) from package to s center of die. ls internal Source Inductance ALL - 7.5 - oH Measured from the | source jead, 6mm (0.25 in.) from 4 Package to source bonding pad. Thermal Resistance Rthuc Junction-to-Case ALL _ = 1.0 C/W Rincs Case-to-Sink ALL - 1.0 - C/W Mounting surface flat, smooth, and greased. Rthya _ Junction-to-Ambient ALL = -~ 80 c/w Free Air Operation Source-Drain Diode Ratings and Characteristics Is Cantinuous Source Current IRF540 _ _ 27 A Modified MOSFET symbol (Body Diode) tRF541 showing the integral IRF542 reverse P-N junction rectifier. iRFE43 | ~_| 4 A ' ism Pulse Source Current iRFS40 & (Body Diode) @ ine54y | ~ {108 | A 4 IRF542 inrsaa | ~ | ~ | 96 A Vsp Diode Forward Voltage @) IRF540 = - _ IRF541 - ~ 2.5 v Te = 25C, Ig = 27A, Vgg = OV IRFS42 _ . \RFS43 - ~ | 23 v Te = 25C, Ig = 244, Vg = OV try Reverse Recovery Time ALL = 500 - ns Ty = 150C, tp = 27A, die/dt = 100A/us QaR _ Reverse Recovered Charge ALL = 2.9 ~ ue Ty = 150C, ip = 27A, die/dt = 100A/us ton Forward Turn-on Time ALL intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp. @ Ty = 25C to 150C. @ Pulse Test: Pulse width < 300us, Duty Cycle < 2%. Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5). Standard Power MOSFETs IRF540, IRF541, IRF542, IRF543 us PULSE 80 us PULSE 1 1 Vos > tp(on) * max. ig, DRAIN CURRENT (AMPERES) Ip. DRAIN CURRENT (AMPERES) 0 10 20 30 40 50 0 2 4 6 8 10 Vos, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vgg, GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics 1000 500 OPERATION IN THIS 200 AREA IS LIMITED = BY Rosion) g a IRES40. 1 oc = 100 wa a. a = 3 = 4 < = 50 - z a a IRF 540, = 3 2 2 S =z =z = z = 10 = a Te = 250C a Ty = 150C MAX. 5 Rune = 1.0 KW SINGLE PULSE 2 IRFB41, 3 1RE540, 2 lo 0 1 2 3 4 5 1002 5 10 20 50 100 200 500 Vps. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vos. ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Area bE =z & 3 2 =z = EE 10 wz 22 5& os wo wa he az 02 | us. z jot Eo >| Sz tap == 0.05 ty 35 1. OUTY FACTOR, D= 1 . 2 SINGLE PULSE (TRANSIENT OR, D= = oo THERMAL IMPEDANCE) 2. PER UNIT BASE = Renyc = 1.0 DEG. CW. 3 3. Tym - Te = Pom Ztnsclt. wr 0.03 105 2 5 10-4 2 19-3 2 0-2 2 5 i0-1 2 5 10 2 5 10 - iy, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 3-151 Standard Power MOSFETs IRF540, IRF541, IRF542, IRF543 1 _ 2 2 ry 3 2 3 8 2 5 a z 3 8 = ws PULSE _ t Vos > !Dion} x Roston) o 9 10 20 0 40 50 ip, ORAIN CURRENT (AMPERES) Fig. 6 Typical Transconductance Vs. Drain Current 1,25 = = = = 2 = a a a BVogs, DRAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZEO) e & z 0.75 40 q 40 80 126 160 Ty. JUNCTION TEMPERATURE (C) Fig. 8 Breakdown Voltage Vs. Temperature 2000 Cigs = Co + Cog, Cus SHORTED Chey = Cu - = Cos C, f= | MHz 1600 oss = Cast Be Cog Cys + Cog < = 1200 3 = < & < a S 800 o 400 0 5 0 1 2 2 230 3 40 45 50 Vg, ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage 3-152 Ty = 1509C Ipr. REVERSE DRAIN CURRENT (AMPERES) oO 04 08 4.2 1.6 2.0 Vgp, SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7 ~ Typical Source-Drain Diode Forward Voltage 25 = = N o in o {NORMALIZED} RDS(on). GRAIN-TO-SQURCE ON-STATE RESISTANCE 2 aw 0 40 a 40 80 120 160 Ty, JUNCTION TEMPERATURE (C) Fig. 9 Normalized On-Resistance Vs. Temperature 20 an Vos = vps" 0y Vos * 8OV, IRF540, 542 t tp = 348 on TEST CIRCUIT FIGURE 18 Vgs. GATE-TO-SOURCE VOLTAGE (VOLTS} 3S a 20 40 60 80 Qg, TOTAL GATE CHARGE {nC} Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage