www.irf.com 1
09/11/09
IRG6I330UPbF
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Features
l Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
circuits in PDP applications
l Low VCE(on) and Energy per Pulse (EPULSETM)
for improved panel efficiency
l High repetitive peak current capability
l Lead Free package
PDP TRENCH IGBT
E
C
G
n-channel
GC E
Gate Collector Emitter
TO-220AB
Full-Pak
G
CE
VCE min 330 V
VCE(ON) typ. @ IC = 28A 1.30 V
IRP max @ TC= 25°C 250 A
TJ max 150 °C
Key Parameters
Absolute Maximum Ratings
Parameter Units
VGE Gate-to-Emitter Voltage V
IC @ TC = 25°C Continuous Collector Current, VGE @ 15V A
IC @ TC = 100°C Continuous Collector, VGE @ 15V
IRP @ TC = 25°C Repetitive Peak Current
c
PD @TC = 25°C Power Dissipation W
PD @TC = 100°C Power Dissipation
Linear Derating Factor W/°C
TJ Operating Junction and °C
TSTG Storage Temperature Range
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw N
Thermal Resistance
Parameter Typ. Max. Units
RθJC Junction-to-Case
d
––– 2.9 °C/W
Max.
15
250
28
±30
300
-40 to + 150
10lb
x
in (1.1N
x
m)
43
17
0.34
PD - 96192A
IRG6I330UPbF
2www.irf.com
Notes:
Half sine wave with duty cycle = 0.05, ton=2µsec.
Rθ is measured at TJ of approximately 90°C.
Pulse width 400µs; duty cycle 2%.
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BVCES Collector-to-Emitter Breakdown Voltage 330 ––– ––– V
V(BR)ECS Emitter-to-Collector Breakdown Voltage
e
30 ––– ––– V
∆ΒVCES/TJ Breakdown Voltage Temp. Coefficient ––– 0.29 ––– V/°C
––– 1.13 –––
––– 1.30 1.55
1.43 ––– V
––– 1.80 –––
––– 2.38 –––
––– 2.10 –––
VGE(th) Gate Threshold Voltage 2.6 ––– 5.0 V
VGE(th)/TJGate Threshold Voltage Coefficient ––– -12 ––– mV/°C
ICES Collector-to-Emitter Leakage Current ––– 2.0 20
––– 10 –––
––– 40 200
––– 150 –––
IGES Gate-to-Emitter Forward Leakage ––– ––– 100 nA
Gate-to-Emitter Reverse Leakage ––– ––– -100
gfe Forward Transconductance ––– 94 ––– S
QgTotal Gate Charge ––– 86 ––– nC
Qgc Gate-to-Collector Charge ––– 36 –––
td(on) Turn-On delay time ––– 39 ––– IC = 25A, VCC = 196V
trRise time ––– 32 ––– ns RG = 10, L=200µH, LS= 150nH
td(off) Turn-Off delay time ––– 120 ––– TJ = 25°C
tfFall time ––– 55 –––
td(on) Turn-On delay time ––– 37 ––– IC = 25A, VCC = 196V
trRise time ––– 33 ––– ns RG = 10, L=200µH, LS= 150nH
td(off) Turn-Off delay time ––– 159 ––– TJ = 150°C
tfFall time ––– 95 –––
tst Shoot Through Blocking Time 100 ––– ––– ns
EPULSE Energy per Pulse µJ
Human Body Model
Machine Model
Cies Input Capacitance ––– 2275 –––
Coes Output Capacitance ––– 108 ––– pF
Cres Reverse Transfer Capacitance ––– 75 –––
LCInternal Collector Inductance ––– 4.5 ––– Between lead,
nH 6mm (0.25in.)
LEInternal Emitter Inductance ––– 7.5 ––– from package
VGE = 15V, ICE = 120A
e
Static Collector-to-Emitter Voltage
VCE(on)
VGE = 15V, ICE = 70A, TJ = 150°C
e
VGE = 15V, ICE = 40A
e
––– 1086 –––
VCE = 25V, ICE = 25A
VCE = 200V, IC = 25A, VGE = 15V
e
VCC = 240V, RG= 5.1Ω, TJ = 25°C
––– 943 –––
VCC = 240V, VGE = 15V, RG= 5.1
VCE = VGE, ICE = 500µA
VCE = 330V, VGE = 0V
VCE = 330V, VGE = 0V, TJ = 150°C
VGE = 30V
VGE = -30V
VCE = 330V, VGE = 0V, TJ = 100°C
µA
ƒ = 1.0MHz, See Fig.13
and center of die contact
VCE = 330V, VGE = 0V, TJ = 125°C
L = 220nH, C= 0.40µF, VGE = 15V
L = 220nH, C= 0.40µF, VGE = 15V
VCC = 240V, RG= 5.1Ω, TJ = 100°C
Conditions
VGE = 0V, ICE = 1 mA
Reference to 25°C, ICE = 1mA
VGE = 15V, ICE = 70A
e
VGE = 15V, ICE = 15A
e
VGE = 15V, ICE = 28A
e
VGE = 0V, ICE = 1 A
ESD
Class 2
(Per JEDEC standard JESD22-A114)
Class B
(Per EIA/JEDEC standard EIA/JESD22-A115)
VCE = 30V
VGE = 0V
IRG6I330UPbF
www.irf.com 3
Fig 1. Typical Output Characteristics @ 25°C
Fig 3. Typical Output Characteristics @ 125°C Fig 4. Typical Output Characteristics @ 150°C
Fig 2. Typical Output Characteristics @ 75°C
Fig 5. Typical Transfer Characteristics Fig 6. VCE(ON) vs. Gate Voltage
0 2 4 6 8 10 12 14 16 18
VGE (V)
0
100
200
300
400
500
ICE (A)
TJ = 25°C
TJ = 150°C
5 101520
VGE (V)
0
5
10
15
20
25
VCE (V)
TJ = 25°C
TJ = 150°C
IC = 25A
0246810
VCE (V)
0
100
200
300
400
500
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
0246810
VCE (V)
0
100
200
300
400
500
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
0246810
VCE (V)
0
100
200
300
400
500
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
0246810
VCE (V)
0
100
200
300
400
500
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
IRG6I330UPbF
4www.irf.com
Fig 7. Maximum Collector Current vs. Case Temperature Fig 8. Typical Repetitive Peak Current vs. Case Temperature
Fig 10. Typical EPULSE vs. Collector-to-Supply Voltage
Fig 9. Typical EPULSE vs. Collector Current
Fig 11. EPULSE vs. Temperature Fig 12. Forrward Bias Safe Operating Area
0 25 50 75 100 125 150
TC (°C)
0
5
10
15
20
25
30
IC (A)
150 160 170 180 190 200 210 220 230
IC, Peak Collector Current (A)
600
650
700
750
800
850
900
950
1000
1050
1100
Energy per Pulse (µJ)
VCC
= 240V
L = 220nH
C = variable 100°C
25°C
25 50 75 100 125 150
TJ, Temperature (ºC)
200
400
600
800
1000
1200
1400
Energy per Pulse (µJ)
VCC = 240V
L = 220nH
t = 1µs half sine
C= 0.4µF
C= 0.3µF
C= 0.2µF
25 50 75 100 125 150
Case Temperature (°C)
0
20
40
60
80
100
120
140
160
180
200
220
240
260
Repetitive Peak Current (A)
ton= 2µs
Duty cycle <= 0.05
Half Sine Wave
1 10 100 1000
VCE (V)
0.1
1
10
100
1000
IC (A)
10µsec
100µsec
Tc = 25°C
Tj = 150°C
Single Pulse
1msec
195 200 205 210 215 220 225 230 235 240
VCC, Collector-to-Supply Voltage (V)
500
600
700
800
900
1000
1100
Energy per Pulse (µJ)
L = 220nH
C = 0.4µF
100°C
25°C
IRG6I330UPbF
www.irf.com 5
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
0 20406080100
Q G, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
16
VGE, Gate-to-Emitter Voltage (V)
VCES
= 240V
VCES
= 150V
VCES
= 60V
IC = 25A
050 100 150 200
VCE, Collector-toEmitter-Voltage(V)
10
100
1000
10000
100000
Capacitance (pF)
Cies
Coes
Cres
VGS = 0V, f = 1 MHZ
Cies = C ge + Cgd, C ce SHORTED
Cres = Cgc
Coes = Cce + Cgc
1E-006 1E-005 0.0001 0.001 0.01 0.1 110 100
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
Ci i/Ri
Ci= τi/Ri
τ
τC
τ4
τ4
R4
R4Ri (°C/W) τi (sec)
0.11889 0.000045
0.35666 0.001841
1.09829 0.128114
1.32616 2.452
IRG6I330UPbF
6www.irf.com
Fig 16a. tst and EPULSE Test Circuit Fig 16b. tst Test Waveforms
Fig 16c. EPULSE Test Waveforms
1K
VCC
DUT
0
L
Fig. 17 - Gate Charge Circuit (turn-off)
DRIVER
DUT
L
C
VCC
RG
RG
B
A
Ipulse
Energy
V
CE
I
C
Current
PULSE A
PULSE B
t
ST
IRG6I330UPbF
www.irf.com 7
TO-220AB Full-Pak package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/2009
The specifications set forth in this data sheet are the sole and
exclusive specifications applicable to the identified product,
and no specifications or features are implied whether by
industry custom, sampling or otherwise. We qualify our
products in accordance with our internal practices and
procedures, which by their nature do not include qualification to
all possible or even all widely used applications. Without
limitation, we have not qualified our product for medical use or
applications involving hi-reliability applications. Customers are
encouraged to and responsible for qualifying product to their
own use and their own application environments, especially
where particular features are critical to operational performance
or safety. Please contact your IR representative if you have
specific design or use requirements or for further information.
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
/2*2,17+($66(0%/</,1(.
$66(0%/('21::
(;$03/(
/27&2'(
7+,6,6$1,5),*
:,7+$66(0%/< 3$57180%(5
,17(51$7,21$/
5(&7,),(5
.
,5),*
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH /,1(.
:((.
<($5
'$7(&2'(
/27&2'(
$66(0%/<

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/