To learn more about ON Semiconductor, please visit our website at
www.onsemi.com
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers
will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor
product management systems do not have the ability to manage part nomenclature that utilizes an underscore
(_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain
device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated
device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please
email any questions regarding the system integration to Fairchild_questions@onsemi.com.
Is Now Part of
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number
of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right
to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON
Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON
Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA
Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, afliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out
of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor
is an Equal Opportunity/Afrmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
FDV301N
Digital FET , N-Channel
General Description Features
Absolute Maximum Ratings TA = 25oC unless other wise noted
Symbol Parameter FDV301NUnits
VDSS, VCC Drain-Source Voltage, Power Supply Voltage 25 V
VGSS, VIGate-Source Voltage, VIN 8V
ID, IO Drain/Output Current - Continuous 0.22 A
0.5
PDMaximum Power Dissipation 0.35 W
TJ,TSTG Operating and Storage Temperature Range -55 to 150 °C
ESD Electrostatic Discharge Rating MIL-STD-883D
Human Body Model (100pf / 1500 Ohm) 6.0 kV
THERMAL CHARACTERISTICS
RθJA Thermal Resistance, Junction-to-Ambient 357 °C/W
25 V, 0.22 A continuous, 0.5 A Peak.
RDS(ON) = 5 @ VGS= 2.7 V
RDS(ON) = 4 @ VGS= 4.5 V.
Very low level gate drive requirements allowing direct
operation in 3V circuits. VGS(th) < 1.06V.
Gate-Source Zener for ESD ruggedness.
>6kV Human Body Model
Replace multiple NPN digital transistors with one DMOS
FET.
This N-Channel logic level enhancement mode field effect
transistor is produced using Fairchild's proprietary, high cell
density, DMOS technology. This very high density process is
especially tailored to minimize on-state resistance. This
device has been designed especially for low voltage
applications as a replacement for digital transistors. Since
bias resistors are not required, this one N-channel FET can
replace several different digital transistors, with different bias
resistor values.
Mark:301
SOT-23 SuperSOTTM-8 SOIC-16
SO-8 SOT-223
SuperSOTTM-6
D
GS
D
SG
IN
GND
Vcc
INVERTER APPLICATION
OUT
June 2009
FDV301N Rev.F1
©2009 Fairchild Semiconductor Corporation
Inverter Electrical Characteristics (TA = 25°C unless otherwise noted)
Symbol Parameter Conditions Min Typ Max Units
IO (off) Zero Input Voltage Output Current VCC = 20 V, VI = 0 V 1µA
VI (off) Input Voltage VCC = 5 V, IO = 10 µA0.5 V
VI (on) VO = 0.3 V, IO = 0.005 A 1V
RO (on) Output to Ground Resistance VI = 2.7 V, IO = 0.2 A4 5
Electrical Characteristics (TA = 25 OC unless otherwise noted )
Symbol Parameter Conditions Min Typ Max Units
OFF CHARACTERISTICS
BVDSS Drain-Source Breakdown Voltage VGS = 0 V, ID = 250 µA 25 V
BVDSS/TJBreakdown Voltage Temp. Coefficient ID = 250 µA, Referenced to 25 o C25 mV / oC
IDSS Zero Gate Voltage Drain Current VDS = 20 V, VGS = 0 V 1µA
TJ = 55°C 10 µA
IGSS Gate - Body Leakage Current VGS = 8 V, VDS= 0 V 100 nA
ON CHARACTERISTICS (Note)
VGS(th)/TJGate Threshold Voltage Temp. Coefficient ID = 250 µA, Referenced to 25 o C-2.1 mV / oC
VGS(th) Gate Threshold Voltage VDS = VGS, ID = 250 µA0.70 0.85 1.06 V
RDS(ON) Static Drain-Source On-Resistance VGS = 2.7 V, ID = 0.2 A 3.8 5
TJ =125°C 6.3 9
VGS = 4.5 V, ID = 0.4 A 3.1 4
ID(ON) On-State Drain Current VGS = 2.7 V, VDS = 5 V 0.2 A
gFS Forward Transconductance VDS = 5 V, ID= 0.4 A 0.2 S
DYNAMIC CHARACTERISTICS
Ciss Input Capacitance VDS = 10 V, VGS = 0 V,
f = 1.0 MHz 9.5 pF
Coss Output Capacitance 6 pF
Crss Reverse Transfer Capacitance 1.3 pF
SWITCHING CHARACTERISTICS (Note)
tD(on)Turn - On Delay Time VDD = 6 V, ID = 0.5 A,
VGS = 4.5 V, RGEN = 50 3.2 8ns
trTurn - On Rise Time 6 15 ns
tD(off) Turn - Off Delay Time 3.5 8ns
tfTurn - Off Fall Time 3.5 8ns
QgTotal Gate Charge VDS = 5 V, ID = 0.2 A,
VGS = 4.5 V 0.49 0.7 nC
Qgs Gate-Source Charge 0.22 nC
Qgd Gate-Drain Charge 0.07 nC
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS
ISMaximum Continuous Drain-Source Diode Forward Current 0.29 A
VSD Drain-Source Diode Forward Voltage VGS = 0 V, IS = 0.29 A (Note)0.8 1.2 V
Note:
Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%.
FDV301N Rev.F1
0 0.5 1 1.5 2 2.5 3
0
0.1
0.2
0.3
0.4
0.5
V , DRAIN-SOURCE VOLTAGE (V)
I , DRAIN-SOURCE CURRENT (A)
3.5
2.7
2.5
V = 4.5V
GS 4.0
2.0
1.5
DS
D
3.0
0 0.1 0.2 0.3 0.4 0.5
0.6
0.8
1
1.2
1.4
I , DRAIN CURRENT (A)
DRAIN-SOURCE ON-RESISTANCE
V = 2.0V
GS
2.7
3.0
4.04.5
D
3.5
2.5
R DS(on ), NORMALIZED
Typical Electrical Characteristics
Figure 1. On-Region Characteristics.Figure 2. On-Resistance Variation with
Drain Current and Gate Voltage.
-50 -25 0 25 50 75 100 125 150
0.6
0.8
1
1.2
1.4
1.6
1.8
T , JUNCTION TEMPERATURE (°C)
DRAIN-SOURCE ON-RESISTANCE
J
V = 2.7 V
GS
I = 0.2A
D
R , NORMALIZED
DS(ON)
Figure 3. On-Resistance Variation
with Temperature.
0.5 1 1.5 2 2.5
0
0.05
0.1
0.15
0.2
V , GATE TO SOURCE VOLTAGE (V)
I , DRAIN CURRENT (A)
25°C
125°C
V = 5.0V
DS
GS
D
T = -55°C
J
Figure 5. Transfer Characteristics.
0.2 0.4 0.6 0.8 11.2
0.0001
0.001
0.01
0.1
0.2
0.5
V , BODY DIODE FORWARD VOLTAGE (V)
I , REVERSE DRAIN CURRENT (A)
T = 125°C
J
25°C
-55°C
V = 0V
GS
SD
S
Figure 6. Body Diode Forward Voltage
Variation with Source Current and Temperature.
Figure 4. On Resistance Variation with
Gate-To-Source Voltage.
22.5 33.5 4
0
3
6
9
12
15
V , GATE TO SOURCE VOLTAGE (V)
GS
R , ON-RESISTANCE (OHM)
DS(on)
125°C
25°C
I = 0.2A
D
FDV301N Rev.F1
FDV301N Rev.F1
00.1 0.2 0.3 0.4 0.5 0.6
0
1
2
3
4
5
Q , GATE CHARGE (nC)
V , GATE-SOURCE VOLTAGE (V)
g
GS
I = 0.2A
D
15V
V = 5V
DS 10V
0.5 1 2 5 10 15 25 35
0.01
0.02
0.05
0.1
0.2
0.5
1
V , DRAI N-SOURCE VOLTAGE (V)
I , DRAIN CURRENT (A)
DS
D
DC
1s
100ms
10s
1ms
RDS(ON) LIMIT
V = 2.7V
SINGLE PULSE
R = 357 °C/W
T = 25°C
GS
A
θJA
0.001 0.01 0.1 1 10 100 300
0
1
2
3
4
5
SINGLE PULSE TIME (SEC)
POWER (W)
SINGLE PULSE
R =357° C/W
T = 25°C
θJA
A
Figure 10. Single Pulse Maximum Power
Dissipation.
Figure 11. Transient Thermal Response Curve.
0.1 0.5 1 2 5 10 25
1
2
3
5
10
20
30
V , DRAIN TO SOURCE VOLTAGE (V)
CAPACITANCE (pF)
DS
C
iss
f = 1 MHz
V = 0V
GS
C
oss
C
rss
Figure 8. Capacitance Characteristics.
Figure 7. Gate Charge Characteristics.
Figure 9. Maximum Safe Operating Area.
Typical Electrical And Thermal Characteristics
0.0001 0.001 0.01 0.1 1 10 100 300
0.001
0.002
0.005
0.01
0.02
0.05
0.1
0.2
0.5
1
t , TIME (sec)
TRANSIENT THERMAL RESISTANCE
Duty Cycle, D = t /t
1 2
R (t) = r(t) * R
R = 357 °C/W
θJA
θJA
θJA
T - T = P * R (t)
θJAA
J
P(pk)
t
1 t
2
r(t), NORMALIZED EFFECTIVE
1
Single Pulse
D = 0.5
0.1
0.05
0.02
0.01
0.2
www.fairchildsemi.com
®
©2009 Fairchild Semiconductor Corporation
FDV301N Rev.F1 3
TRADEMARKS
The following includes regist ered and unregister ed trademarks and se rvice marks, owned by Fairchild Semiconductor and/o r its global subsidia ries, and is not
intended to be an exh austive list of all such trademarks.
*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY
PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY
THEREIN, WHICH COVERS THESE PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are
intended for surgical implant into the body or (b) support or sustain life,
and (c) whose failure to perform when properly used in accorda nce with
instructions for use provided in the labeling, can be reasonably
expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or
system whose failure to perform can be reaso nably expect ed t o cause
the failure of the life support device or system, or to affect its safety or
effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Auto-SPM™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT
CTL™
Current Transfer Logic™
EcoSPARK®
EfficentMax™
EZSWITCH™ *
™*
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore™
FETBench™
FlashWriter® *
FPS™
F-PFS™
FRFET®
Global Power ResourceSM
Green FPS™
Green FPS™ e-Series™
Gmax
GTO™
IntelliMAX™
ISOPLANAR™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MillerDrive™
MotionMax™
Motion-SPM™
OPTOLOGIC®
OPTOPLANAR®
®
PDP SPM™
Power-SPM™
PowerTrench®
PowerXS™
Programmable Active Droop™
QFET®
QS™
Quiet Series™
RapidConfigure™
Saving our world, 1mW /W /kW at a time™
SmartMax™
SMART START™
SPM®
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS™
SyncFET™
Sync-Lock™®*
The Power Franchise®
®
TinyBoost™
TinyBuck™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TriFault Detect™
TRUECURRENT™*
µSerDes™
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
XS™
tm
®
tm
tm
Datasheet Identification Product Status Definition
Advance Information Formative / In Design Datasheet contain s th e design specifications for product development. Specifications
may change in any manner with out notice.
Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later
date. Fairchild Semiconduct or reserves the right to make changes at any time without
notice to improve design.
No Identification Neede d Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to
make changes at any time without notice to impr ove the design.
Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild
Semiconductor. The datasheet is for reference information only.
ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website,
www.Fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor part s is a growing problem in the industry. All manufactures of se miconductor products are experien cing counterfeiting of their
parts. Customers who ina dvertent ly pu rchase counte rfeit par ts e xperien ce man y problems such as loss o f brand re putat ion, subst anda rd performance, fa iled
application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the
proliferation of counterfeit pa rts. Fairch ild strongly encou rages custome rs to purchase Fairch ild parts either dire ctly from Fairchild or from Authorized Fairchild
Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild
Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Fairchild’s full range of
up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and
warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts boug ht from Unauthorized Sources. Fairchild is
committed to co mbat this global pr oblem and encourag e our customer s to do thei r part in stopping this pract ice by buying direct or f rom authorized distribut ors.
Rev. I40
www.onsemi.com
1
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81358171050
www.onsemi.com
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
© Semiconductor Components Industries, LLC