17
01.19
D
Metallized Polyester (PET) SMD Film Capacitors with Box Encapsulation.
Capacitances from 0.01 mF to 6.8 mF. Rated Voltages from 63 VDC to 1000 VDC.
Size Codes from 1812 to 6054.
Special Features Electrical Data
WIMA SMD-PET
˜ Size codes 1812, 2220, 2824,
4030, 5040 and 6054 with PET
and encapsulated
˜ Operating temperature up to 100° C
˜ Self-healing
˜ According to RoHS 2011/65/EU
Typical Applications
For general DC-applications e.g.
˜ By-pass
˜ Blocking
˜ Coupling and decoupling
˜ Timing
Construction
Dielectric:
Polyethylene-terephthalate (PET) film
Capacitor electrodes:
Vacuum-deposited
Internal construction:
Plastic film
Vacuum-deposited
electrode
Metal contact layer
(schoopage)
Terminating plate
Encapsulation:
Solvent-resistant, flame-retardant plastic
case, UL 94 V-0
Terminations:
Tinned plates.
Marking:
Box colour: Black.
Capacitance range:
0.01 mF to 6.8 mF
Rated voltages:
63 VDC, 100 VDC, 250 VDC, 400 VDC,
630 VDC, 1000 VDC
Capacitance tolerances:
±20%, ±10% (±5% available subject
to special enquiry)
Operating temperature range:
–55+ C to +100+ C (+125° C available
subject to special enquiry)
Climatic test category:
55/100/21 according to IEC
for size codes 1812 to 2824
55/100/56 according to IEC
for size codes 4030 to 6054
Insulation resistance at +20+ C:
Ur Utest C 0.33 mF 0.33 mF < C 6.8 mF
63 VDC 50 V 3.75 x 103 M¸ 1250 sec (M¸ x mF)
100 VDC 100 V
250 VDC
100 V 1 x 104 M¸ 3000 sec (M¸ x mF)
Measuring time: 1 min.
Dissipation factors at +20) C: tan d
at f C 0.1 mF 0.1 mF < C 1.0 mF C > 1.0 mF
1 kHz 8 x 10-3 8 x 10-3 10 x 10-3
10 kHz 15 x 10-3 15 x 10-3
100 kHz 30 x 10-3
Maximum pulse rise time: for pulses equal to the rated voltage
Capacitance Pulse rise time V/msec
mF max. operation/test
63 VDC 100 VDC 250 VDC 400 VDC 630 VDC 1000 VDC
0.01 ... 0.022 30/300 35/350 40/400 35/350 40/400 50/500
0.033 ... 0.068 20/200 20/200 40/400 21/210 25/250 32/320
0.1 ... 0.22 10/100 10/100 12/120 14/140 17/170
0.33 ... 0.68 8/80 6/60 9/90 10/100
1.0 ... 2.2 3.5/35 4/40 7/70
3.3 ... 6.8 3/30 3/30
Test voltage: 1.6 Ur, 2 sec.
Voltage derating:
A voltage derating factor of 1.25 % per K
must be applied from +85) C for DC
voltages and from +75) C for AC
voltages
Reliability:
Operational life 300 000 hours
Failure rate 2 fit (0.5 x Ur and 40+ C)
Dip Solder Test/Processing
Resistance to soldering heat:
Test Tb in accordance with DIN IEC
60068-2-58/DIN EN 60384-19.
Soldering bath temperature max. 260+ C.
Soldering duration max. 5 sec.
Change in capacitance DC/C 5 %.
Soldering process:
Re-flow soldering (see temperature/time
graphs page 13).
Packing
Available taped and reeled in blister pack.
Detailed taping information and graphs
at the end of the catalogue.
For further details and graphs please
refer to Technical Information.
D
18
01.19
Continuation
General Data
D
WIMA SMD-PET
63 VDC/40 VAC* 100 VDC/63 VAC* 250 VDC/160 VAC*
Capacitance Size H Part number Size H Part number Size H Part number
code ± 0.3 code ± 0.3 code ± 0.3
0.01 mF 1812 3.0 SMDTC02100KA00_ _ _ _ 1812 3.0 SMDTD02100KA00_ _ _ _ 2220 3.5 SMDTF02100QA00_ _ _ _
2220 3.5 SMDTC02100QA00_ _ _ _ 2220 3.5 SMDTD02100QA00_ _ _ _ 2824 3.0 SMDTF02100TA00_ _ _ _
2824 3.0 SMDTC02100TA00_ _ _ _ 2824 3.0 SMDTD02100TA00_ _ _ _
0.015 1812 3.0 SMDTC02150KA00_ _ _ _ 1812 3.0 SMDTD02150KA00_ _ _ _ 2220 3.5 SMDTF02150QA00_ _ _ _
2220 3.5 SMDTC02150QA00_ _ _ _ 2220 3.5 SMDTD02150QA00_ _ _ _ 2824 3.0 SMDTF02150TA00_ _ _ _
2824 3.0 SMDTC02150TA00_ _ _ _ 2824 3.0 SMDTD02150TA00_ _ _ _
0.022 1812 3.0 SMDTC02220KA00_ _ _ _ 1812 3.0 SMDTD02220KA00_ _ _ _ 2220 3.5 SMDTF02220QA00_ _ _ _
2220 3.5 SMDTC02220QA00_ _ _ _ 2220 3.5 SMDTD02220QA00_ _ _ _ 2824 3.0 SMDTF02220TA00_ _ _ _
2824 3.0 SMDTC02220TA00_ _ _ _ 2824 3.0 SMDTD02220TA00_ _ _ _
0.033 1812 3.0 SMDTC02330KA00_ _ _ _ 1812 3.0 SMDTD02330KA00_ _ _ _ 2220 3.5 SMDTF02330QA00_ _ _ _
2220 3.5 SMDTC02330QA00_ _ _ _ 2220 3.5 SMDTD02330QA00_ _ _ _ 2824 3.0 SMDTF02330TA00_ _ _ _
2824 3.0 SMDTC02330TA00_ _ _ _ 2824 3.0 SMDTD02330TA00_ _ _ _ 4030 5.0 SMDTF02330VA00_ _ _ _
0.047 1812 3.0 SMDTC02470KA00_ _ _ _ 1812 3.0 SMDTD02470KA00_ _ _ _ 2220 3.5 SMDTF02470QA00_ _ _ _
2220 3.5 SMDTC02470QA00_ _ _ _ 2220 3.5 SMDTD02470QA00_ _ _ _ 2824 3.0 SMDTF02470TA00_ _ _ _
2824 3.0 SMDTC02470TA00_ _ _ _ 2824 3.0 SMDTD02470TA00_ _ _ _ 4030 5.0 SMDTF02470VA00_ _ _ _
0.068 1812 3.0 SMDTC02680KA00_ _ _ _ 1812 3.0 SMDTD02680KA00_ _ _ _ 2220 4.5* SMDTF02680QB00_ _ _ _
2220 3.5 SMDTC02680QA00_ _ _ _ 2220 3.5 SMDTD02680QA00_ _ _ _ 2824 3.0 SMDTF02680TA00_ _ _ _
2824 3.0 SMDTC02680TA00_ _ _ _ 2824 3.0 SMDTD02680TA00_ _ _ _ 4030 5.0 SMDTF02680VA00_ _ _ _
0.1 mF 1812 4.0* SMDTC03100KB00_ _ _ _ 1812 4.0* SMDTD03100KB00_ _ _ _ 2220 4.5* SMDTF03100QB00_ _ _ _
2220 3.5 SMDTC03100QA00_ _ _ _ 2220 3.5 SMDTD03100QA00_ _ _ _ 2824 5.0 SMDTF03100TB00_ _ _ _
2824 3.0 SMDTC03100TA00_ _ _ _ 2824 3.0 SMDTD03100TA00_ _ _ _ 4030 5.0 SMDTF03100VA00_ _ _ _
0.15 1812 4.0* SMDTC03150KB00_ _ _ _ 1812 4.0 SMDTD03150KB00_ _ _ _ 2824 5.0 SMDTF03150TB00_ _ _ _
2220 3.5 SMDTC03150QA00_ _ _ _ 2220 3.5 SMDTD03150QA00_ _ _ _ 4030 5.0 SMDTF03150VA00_ _ _ _
2824 3.0 SMDTC03150TA00_ _ _ _ 2824 3.0 SMDTD03150TA00_ _ _ _
0.22 1812 4.0* SMDTC03220KB00_ _ _ _ 1812 4.0 SMDTD03220KB00_ _ _ _ 2824 5.0 SMDTF03220TB00_ _ _ _
2220 3.5 SMDTC03220QA00_ _ _ _ 2220 3.5 SMDTD03220QA00_ _ _ _ 4030 5.0 SMDTF03220VA00_ _ _ _
2824 3.0 SMDTC03220TA00_ _ _ _ 2824 3.0 SMDTD03220TA00_ _ _ _
0.33 1812 4.0 SMDTC03330KB00_ _ _ _ 2220 4.5 SMDTD03330QB00_ _ _ _ 2824 5.0 SMDTF03330TB00_ _ _ _
2220 4.5* SMDTC03330QB00_ _ _ _ 2824 5.0 SMDTD03330TB00_ _ _ _ 4030 5.0 SMDTF03330VA00_ _ _ _
2824 5.0* SMDTC03330TB00_ _ _ _ 4030 5.0 SMDTD03330VA00_ _ _ _ 5040 6.0 SMDTF03330XA00_ _ _ _
0.47 1812 4.0 SMDTC03470KB00_ _ _ _ 2220 4.5 SMDTD03470QB00_ _ _ _ 4030 5.0 SMDTF03470VA00_ _ _ _
2220 4.5* SMDTC03470QB00_ _ _ _ 2824 5.0 SMDTD03470TB00_ _ _ _ 5040 6.0 SMDTF03470XA00_ _ _ _
2824 5.0* SMDTC03470TB00_ _ _ _ 4030 5.0 SMDTD03470VA00_ _ _ _
0.68 2220 4.5 SMDTC03680QB00_ _ _ _ 2824 5.0 SMDTD03680TB00_ _ _ _ 5040 6.0 SMDTF03680XA00_ _ _ _
2824 5.0* SMDTC03680TB00_ _ _ _ 4030 5.0 SMDTD03680VA00_ _ _ _
4030 5.0 SMDTC03680VA00_ _ _ _ 5040 6.0 SMDTD03680XA00_ _ _ _
1.0 mF 2220 4.5 SMDTC04100QB00_ _ _ _ 2824 5.0 SMDTD04100TB00_ _ _ _ 6054 7.0 SMDTF04100YA00_ _ _ _
2824 5.0* SMDTC04100TB00_ _ _ _ 4030 5.0 SMDTD04100VA00_ _ _ _
4030 5.0 SMDTC04100VA00_ _ _ _ 5040 6.0 SMDTD04100XA00_ _ _ _
1.5 2824 5.0 SMDTC04150TB00_ _ _ _ 4030 5.0 SMDTD04150VA00_ _ _ _
4030 5.0 SMDTC04150VA00_ _ _ _ 5040 6.0 SMDTD04150XA00_ _ _ _ * Version according to catalogue 2013
still available
2.2 2824 5.0 SMDTC04220TB00_ _ _ _ 5040 6.0 SMDTD04220XA00_ _ _ _
4030 5.0 SMDTC04220VA00_ _ _ _
3.3 4030 5.0 SMDTC04330VA00_ _ _ _ 5040 6.0 SMDTD04330XA00_ _ _ _
4.7 5040 6.0 SMDTC04470XA00_ _ _ _ 6054 7.0 SMDTD04470YA00_ _ _ _
6.8 6054 7.0 SMDTC04680YA00_ _ _ _
* AC voltage: f =
50 Hz; 1.4 x Urms + UDC
Ur
Dims. in mm.
Rights reserved to amend design data without prior notification.
Part number completion:
Tolerance: 20 % = M
10 % = K
5 % = J
Packing: bulk = S
Pin length: none = 00
Taped version see page 148.
Continuation page 19
19
01.19
Continuation
General Data
D
WIMA SMD-PET
400 VDC/200 VAC* 630 VDC/300 VAC* 1000 VDC/400 VAC*
Capacitance Size H Part number Size H Part number Size H Part number
code ± 0.3 code ± 0.3 code ± 0.3
0.01 mF 2824 3.0 SMDTG02100TA00_ _ _ _ 4030 5.0 SMDTJ02100VA00_ _ _ _
4030 5.0 SMDTG02100VA00_ _ _ _
0.015 2824 3.0 SMDTG02150TA00_ _ _ _ 4030 5.0 SMDTJ02150VA00_ _ _ _ 5040 6.0 SMDTO12150XA00_ _ _ _
4030 5.0 SMDTG02150VA00_ _ _ _
0.022 „ 2824 5.0* SMDTG02220TB00_ _ _ _ 5040 6.0 SMDTJ02220XA00_ _ _ _ 5040 6.0 SMDTO12220XA00_ _ _ _
4030 5.0 SMDTG02220VA00_ _ _ _
0.033 2824 5.0 SMDTG02330TB00_ _ _ _ 5040 6.0 SMDTJ02330XA00_ _ _ _ 5040 6.0 SMDTO12330XA00_ _ _ _
4030 5.0 SMDTG02330VA00_ _ _ _
0.047 2824 5.0 SMDTG02470TB00_ _ _ _ 5040 6.0 SMDTJ02470XA00_ _ _ _ 6054 7.0 SMDTO12470YA00_ _ _ _
4030 5.0 SMDTG02470VA00_ _ _ _
0.068 4030 5.0 SMDTG02680VA00_ _ _ _ 5040 6.0 SMDTJ02680XA00_ _ _ _
5040 6.0 SMDTG02680XA00_ _ _ _
0.1 mF 4030 5.0 SMDTG03100VA00_ _ _ _ 6054 7.0 SMDTJ03100YA00_ _ _ _
5040 6.0 SMDTG03100XA00_ _ _ _
0.15 4030 5.0 SMDTG03150VA00_ _ _ _ 6054 7.0 SMDTJ03150YA00_ _ _ _
5040 6.0 SMDTG03150XA00_ _ _ _
0.22 5040 6.0 SMDTG03220XA00_ _ _ _ 6054 7.0 SMDTJ03220YA00_ _ _ _
0.33 5040 6.0 SMDTG03330XA00_ _ _ _
0.47 6054 7.0 SMDTG03470YA00_ _ _ _
* AC voltage: f =
50 Hz; 1.4 x Urms + UDC
Ur
* Version according to catalogue 2013 still available
Dims. in mm.
Rights reserved to amend design data without prior notification.
Solder pad recommendation
Size L W d a b c
code ±0.3 ±0.3 min. min. max.
1812 4.8 3.3 0.5 1.2 3.5 3.5
2220 5.7 5.1 0.5 1.2 4 4.5
2824 7.2 6.1 0.5 1.2 4 6.5
4030 10.2 7.6 0.5 2.5 6 9
5040 12.7 10.2 0.7 2.5 6 11.5
6054 15.3 13.7 0.7 2.5 6 14
H
W
L
d
d
b
c
a
Bonding slit
Part number completion:
Tolerance: 20 % = M
10 % = K
5 % = J
Packing: bulk = S
Pin length: none = 00
Taped version see page 148.
13
01.19
D
Recommendation for Processing
and Application of SMD Capacitors
Layout Form
The components can generally be
positioned on the carrier material as
desired. In order to prevent soldering
shadows or ensure regular temperature
distribution, extreme concentration of the
components should be avoided. In prac-
tice, it has proven best to keep a
minimum distance of the soldering
surfaces between two WIMA SMDs of
twice the height of the components.
Solder Pad Recommendation
H
W
L
d
d
b
c
a
Bonding slit
Size
code
L
± 0.3
W
± 0.3
d a
min.
b
min.
c
max.
1812 4.8 3.3 0.5 1.2 3.5 3.5
2220 5.7 5.1 0.5 1.2 44.5
2824 7.2 6.1 0.5 1.2 46.5
4030 10.2 7.6 0.5 2.5 6 9
5040 12.7 10.2 0.7 2.5 611.5
6054 15.3 13.7 0.7 2.5 614
The solder pad size recommendations
given for each individual series are to be
understood as minimum dimensions which
can at any time be adjusted to the layout
form.
Processing
The processing of SMD components
– assembling
– soldering
– electrical final inspection/calibrating
must be regarded as a complete process.
The soldering of the printed circuit board,
for example, can constitute considerable
stress on all the electronic components.
The manufacturer‘s instructions on the pro-
cessing of the components are mandatory.
Due to versatile procedures exact pro-
cessing parameters for re-flow soldering
processes cannot be specified. The graph
depicted is to be understood as a recom-
mendation to help establishing a suitable
soldering profile fulfilling the requirements
in practice at the user. During processing
a max. temperature of T=210° C inside the
component should not be exceeded. Due
to the differing heat absorption the length
of the soldering process should be kept as
short as possible for smaller size codes.
Soldering Process
WIMA SMD capacitors with plastic
film dielectric are generally suitable for
hand-soldering, e. g. for lab purposes, with
a soldering iron where, however, similar to
automated soldering processes, a certain
duration and temperature should not be
exceeded. These parameters are dependent
on the physical size of the components and
the relevant heat absorption involved.
The below data are to be regarded as
guideline values and should serve to avoid
damage to the dielectric caused by exces-
sive heat during the soldering process. The
soldering quality depends on the tool used
and on the skill and experience of the per-
son with the soldering iron in hand.
SMD Handsoldering
Size code Temperature ° C / ° F Time duration
1812 250 / 482 2 sec plate 1 / 5 sec off / 2 sec plate 2
2220 250 / 482 3 sec plate 1 / 5 sec off / 3 sec plate 2
2824 260 / 500 3 sec plate 1 / 5 sec off / 3 sec plate 2
4030 260 / 500 5 sec plate 1 / 5 sec off / 5 sec plate 2
5040 260 / 500 5 sec plate 1 / 5 sec off / 5 sec plate 2
6054 260 / 500 5 sec plate 1 / 5 sec off / 5 sec plate 2
Re-flow soldering
Temperature/time graph for the permissible processing temperature of the
WIMA SMD film capacitor for typical convection soldering processes.
14
01.19
D
Solder Paste
To achieve reliable soldering results one of
the following solder alloys have from case
to case proven being workable:
Lead free solder paste
Sn - Bi
Sn - Zn (Bi)
Sn - Ag - Cu (suitable for SMD-PET 5040/
6054, SMD-PEN and SMD-PPS)
Solder paste with lead
Sn - Pb - Ag (Sn60-Pb40-A, Sn63-Pb37-A)
Washing
WIMA SMD components with plastic
encapsulation - like all other components
of similar construction irrespective of the
make - cannot be regarded as herme-
tically sealed. Due to today’s common
washing substances, e. g. on aqueous
basis instead of the formerly used halo-
genated hydrocarbons, with enhanced
washing efficiency it became obvious that
assembled SMD capacitors may show an
impermissibly high deviation of the electri-
cal parameters after a corresponding
washing process. Hence it is recommended
to refrain from applying industrial washing
processes for WIMA SMD capacitors in
order to avoid possible damages.
Initial Operation/Calibration
Due to the stress which the components
are subjected to during processing, reversi-
ble parameter changes occur in almost all
electronic components. The capacitance
recovery accuracy to be expected with
careful processing is within a scope
of
DC/CT 5 %.
For the initial operation of the device a
minimum storage time of
t U 24 hours
is to be taken into account. With cali-
brated devices or when the application
is largely dependent on capacitance it is
advisable to prolong the storage time to
t U 10 days
In this way ageing effects of the capacitor
structure can be anticipated. Parameter
changes due to processing are not to be
expected after this period of time
Humidity Protection Bags
Taped WIMA SMD capacitors are shipped
in humidity protection bags according to
JEDEC standard (ESD/EMI-shield/water-
vapour proof).
Under controlled conditions the compo-
nents can be stored two years and more
in the originally sealed bag. Opened
packing units should immediately be used
up for processing. If storage is necessary
the opened packing units should be stored
air-tight in the original plastic bag.
Reliability
Taking account of the manufacturer‘s
guidelines and compatible processing,
the WIMA SMD stand out for the same
high quality and reliability as the
analogous through-hole WIMA series. The
technology of metallized film capacitors
used e.g. in WIMA SMD-PET achieves
the best values for all fields of application.
The expected value is about:
Û0 T 2 fit
Furthermore the production of all WIMA
components is subject to the regulations
laid down by ISO 9001:2015 as well
as the guidelines for component specifi-
cations set out by IEC quality assessment
system (IECQ) for electronic components.
Electrical Characteristics and
Fields of Application
Basically the WIMA SMD series have the
same electrical characteristics as the ana-
logous through-hole WIMA capacitors.
Compared to ceramic or tantalum
dielectrics WIMA SMD capacitors have a
number of other outstanding qualities:
favourable pulse rise time
low ESR
low dielectric absorption
available in high voltage series
large capacitance spectrum
stand up to high mechanical
stress
good long-term stability
As regards technical performance as well
as quality and reliability, the WIMA
SMD series offer the possibility to cover
nearly all applications of conventionally
through-hole film capacitors with SMD
components. Furthermore, the WIMA SMD
series can now be used for all the deman-
ding capacitor applications for which, in
the past, the use of through-hole compo-
nents was mandatory:
measuring techniques
oscillator circuits
differentiating and integrating
circuits
A/D or D/A transformers
sample and hold circuits
automotive electronics
With the WIMA SMD programme avai-
lable today, the major part of all plastic
film capacitors can be replaced by WIMA
SMD components. The field of application
ranges from standard coupling capacitors
to use in switch-mode power supplies as
filter or charging capacitors with high vol-
tage and capacitance values, as well as
in telecommunications e.g. the well-known
telephone capacitor 1mF/250VDC.
Recommendation for Processing
and Application of SMD Capacitors
(Continuation)
148
01.19
D
13 0.5
N 1.5
180/330+0
- 2
+2
-0
W1
W max.2
P2
W0
T
F
K
D
0
D
1
P0
B0
B1
W
EG
A0A1
P
10 -20empty compartments 10 -20empty compartments min. 200 mm
Tape return Tape advance
Unwinding direction
Cover film
advance
Size Code 1812 A0
± 0.1
A1B0
± 0.1
B1D0
+ 0.1
-0
D1
+ 0.1
-0
P
± 0.1
P0*
± 0.1
P2
± 0.05
E
± 0.1
F
± 0.05
G W
± 0.3
W0
± 0.2
K
± 0.1
T
± 0.1
taped
Reel
180 mm P
taped
Reel
330 mm P
bulk
Box size Code Standard
4.8 x 3.3 x 3 KA 3.55 3.3 5.1 4.8 P1.5 P1.5 8421.75 5.5 2.2 12 9.5 3.4 0.3 700 2500 3000
4.8 x 3.3 x 4 KB 3.55 3.3 5.1 4.8 P1.5 P1.5 8421.75 5.5 2.2 12 9.5 4.4 0.3 500 2000 3000
Size Code 2220 A0
± 0.1
A1B0
± 0.1
B1D0
+ 0.1
-0
D1
+ 0.1
-0
P
± 0.1
P0*
± 0.1
P2
± 0.05
E
± 0.1
F
± 0.05
G W
± 0.3
W0
± 0.2
K
± 0.1
T
± 0.1
taped
Reel
180 mm P
taped
Reel
330 mm P
bulk
Box size Code Standard
5.7 x 5.1 x 3.5 QA 6.3 5.7 5.6 5.1 P1.5 P1.5 8421.75 5.5 1.95 12 9.5 3.7 0.3 500 1800 3000
5.7 x 5.1 x 4.5 QB 6.3 5.7 5.6 5.1 P1.5 P1.5 8421.75 5.5 1.95 12 9.5 4.7 0.3 400 1500 3000
Size Code 2824 A0
± 0.1
A1B0
± 0.1
B1D0
+ 0.1
-0
D1
+ 0.1
-0
P
± 0.1
P0*
± 0.1
P2
± 0.05
E
± 0.1
F
± 0.05
G W
± 0.3
W0
± 0.2
K
± 0.1
T
± 0.1
taped
Reel
330 mm P
bulk
Box size Code Standard
7.2 x 6.1 x 3 TA 6.6 6.1 7.7 7.2 P1.5 P1.5 12 4 2 1.75 5.5 0.9 12 9.5 3.4 0.3 1500 2000
7.2 x 6.1 x 5 TB 6.6 6.1 7.7 7.2 P1.5 P1.5 12 4 2 1.75 5.5 0.9 12 9.5 5.4 0.4 750 2000
Code
A0
± 0.1
A1B0
± 0.1
B1D0
+ 0.1
-0
D1
+ 0.1
-0
P
± 0.1
P0*
± 0.1
P2
± 0.05
E
± 0.1
F
± 0.05
G W
± 0.3
W0
± 0.2
K
± 0.1
T
± 0.1
taped
Reel
330 mm P
bulk
Standard
Size Code 4030 VA 10.7 10.2 8.1 9.1 P1.5 P1.5 16 4 2 1.75 7.5 1.9 16 13.3 5.5 0.3 775 2000
Size Code 5040 XA 13.5 12.7 11 11.5 P1.5 P1.5 16 4 2 1.75 11.5 4.7 24 21.3 6.5 0.3 600 1000
Size Code 6054 YA 17.0 16.5 15.6 15.0 P1.5 P1.5 20 4 2 1.75 11.5 2.95 24 21.3 7.5 0.3 450 500
* cumulative after 10 steps p 0.2 mm max.
Samples and pre-production needs on request or 1 Reel minimum.
All dims. in mm.
Type W2max W2
0N ±1.5
1812 19 12.4 62
2220 19 12.4 62
2824 19 12.4 62
4030 22.4 16.4 60
5040 30.4 24.4 90
6054 30.4 24.4 90
Packing units
Tape reel: Tape advance and return:
Blister Tape Packaging and Packing Units
of the WIMA SMD Capacitors
W (Blister) P in mm Code
12 180 P
12 330 Q
16 330 R
24 330 T
Bulk Standard S
Part number codes for SMD packing
147
01.19
D
A WIMA part number consists of 18 digits and is composed as follows:
Field 1 - 4: Type description
Field 5 - 6: Rated voltage
Field 7 - 10: Capacitance
Field 11 - 12: Size and PCM
Field 13 - 14: Version code (e.g. Snubber versions)
Field 15: Capacitance tolerance
Field 16: Packing
Field 17 - 18: Pin length (untaped)
12345678910 11 12 13 14 15 16 17 18
M K S 2 C 0 2 1 0 0 1 A 0 0 M S S D
MKS 2 63 VDC 0.01 mF2.5 x 6.5 x 7.2 -20 %bulk 6 -2
WIMA Part Number System
The data on this page is not complete and serves only to explain the part number system. Part number information is listed on the
pages of the respective WIMA range.
Type description: Rated voltage: Capacitance: Size: Tolerance:
SMD-PET = SMDT 50 VDC = B0 22 pF = 0022 4.8 x 3.3 x 3 Size 1812 = KA ±20 % = M
SMD-PEN = SMDN 63 VDC = C0 47 pF = 0047 4.8 x 3.3 x 4 Size 1812 = KB ±10 % = K
SMD-PPS = SMDI 100 VDC = D0 100 pF = 0100 5.7 x 5.1 x 3.5 Size 2220 = QA ±5 % = J
FKP 02 = FKP0 250 VDC = F0 150 pF = 0150 5.7 x 5.1 x 4.5 Size 2220 = QB ±2.5 % = H
MKS 02 = MKS0 400 VDC = G0 220 pF = 0220 7.2 x 6.1 x 3 Size 2824 = TA ±1 % = E
FKS 2 = FKS2 450 VDC = H0 330 pF = 0330 7.2 x 6.1 x 5 Size 2824 = TB ...
FKP 2 = FKP2 520 VDC = H2 470 pF = 0470 10.2 x 7.6 x 5 Size 4030 = VA
FKS 3 = FKS3 600 VDC = I0 680 pF = 0680 12.7 x 10.2 x 6 Size 5040 = XA
FKP 3 = FKP 3 630 VDC = J0 1000 pF = 1100 15.3 x 13.7 x 7 Size 6054 = YA Packing:
MKS 2 = MKS2 700 VDC = K0 1500 pF = 1150 2.5 x 7 x 4.6 PCM 2.5 = 0B AMMO H16.5 340 x 340 = A
MKP 2 = MKP2 800 VDC = L0 2200 pF = 1220 3 x 7.5 x 4.6 PCM 2.5 = 0C AMMO H16.5 490 x 370 = B
MKS 4 = MKS4 850 VDC = M0 3300 pF = 1330 2.5 x 6.5 x 7.2 PCM 5 = 1A AMMO H18.5 340 x 340 = C
MKP 4C = MKPC 900 VDC = N0 4700 pF = 1470 3 x 7.5 x 7.2 PCM 5 = 1B AMMO H18.5 490 x 370 = D
MKP 4 = MKP4 1000 VDC = O1 6800 pF = 1680 2.5 x 7 x 10 PCM 7.5 = 2A REEL H16.5 360 = F
MKP 10 = MKP1 1100 VDC = P0 0.01 mF= 2100 3 x 8.5 x 10 PCM 7.5 = 2B REEL H16.5 500 = H
FKP 1 = FKP1 1200 VDC = Q0 0.022 mF= 2220 3 x 9 x 13 PCM 10 = 3A REEL H18.5 360 = I
MKP-X2 = MKX2 1250 VDC = R0 0.047 mF= 2470 4 x 9 x 13 PCM 10 = 3C REEL H18.5 500 = J
MKP-X1 R = MKX1 1500 VDC = S0 0.1 mF= 3100 5 x 11 x 18 PCM 15 = 4B ROLL H16.5 = N
MKP-Y2 = MKY2 1600 VDC = T0 0.22 mF= 3220 6 x 12.5 x 18 PCM 15 = 4C ROLL H18.5 = O
MP 3-X2 = MPX2 2000 VDC = U0 0.47 mF= 3470 5 x 14 x 26.5 PCM 22.5 = 5A BLISTER W12 180 = P
MP 3-X1 = MPX1 2500 VDC = V0 1 mF= 4100 6 x 15 x 26.5 PCM 22.5 = 5B BLISTER W12 330 = Q
MP 3-Y2 = MPY2 3000 VDC = W0 2.2 mF= 4220 9 x 19 x 31.5 PCM 27.5 = 6A BLISTER W16 330 = R
MP 3R-Y2 = MPRY 4000 VDC = X0 4.7 mF= 4470 11 x21 x 31.5 PCM 27.5 = 6B BLISTER W24 330 = T
MKP 4F = MKPF 6000 VDC = Y0 10 mF= 5100 9 x 19 x 41.5 PCM 37.5 = 7A Bulk/TPS Standard = S
Snubber MKP = SNMP 250 VAC = 0W 22 mF= 5220 11 x 22 x 41.5 PCM 37.5 = 7B ...
Snubber FKP = SNFP 275 VAC = 1W 47 mF= 5470 19 x 31 x 56 PCM 48.5 = 8D
GTO MKP = GTOM 300 VAC = 2W 100 mF= 6100 25 x 45 x 57 PCM 52.5 = 9D
DC-LINK MKP 3 = DCP3 305 VAC = AW 220 mF= 6220 ...
DC-LINK MKP 4 = DCP4 350 VAC = BW 1000 mF= 7100
DC-LINK MKP 4S = DCPS 440 VAC = 4W 1500 mF= 7150
DC-LINK MKP 5 = DCP5 500 VAC = 5W ... Version code: Pin length (untaped)
DC-LINK MKP 6 = DCP6 ... Standard = 00 3.5 ±0.5 = C9
DC-LINK HC = DCHC Version A1 = 1A 6 -2 = SD
DC-LINK HY = DCHY Version A1.1.1 = 1B 16 ±1 = P1
Version A2 = 2A ...
... Pin length (taped)
none = 00