ABB Semiconductors AG reserves the right to change specifications without notice.
V
DSM = 2800
V
ITAVM = 3740
A
ITRMS = 5880
A
ITSM = 60000
A
V
T0 =0.95
V
r
T= 0.100 m
Phase Control Thyristor
5STP 33L2800
D
oc
. N
o
.
5S
YA1
0
11-
03
Sep
.
0
1
Patented free-floating silicon technology
Low on-state and switching losses
Designed for traction, energy and industrial applications
Optimum power handling capability
Interdigitated amplifying gate
Blockin
g
Part Number 5STP 33L2800 5STP 33L2600 5STP 33L2200 Conditions
VDRM VRRM 2800 V 2600 V 2200 V f = 50 Hz, tp = 10ms
VRSM1 3000 V 2800 V 2400 V tp = 5ms, single pulse
IDRM 400 mA VDRM
IRRM 400 mA VRRM
Tj = 125°C
dV/dtcrit 1000 V/µs Exp. to 0.67 x VDRM, Tj = 125°C
Mechanical data
FMMounting force nom. 70 kN
min. 63 kN
max. 84 kN
aAcceleration
Device unclamped
Device clamped
50
100
m/s2
m/s2
mWeight 1.45kg
DSSurface creepage distance 36 mm
DaAir strike distance 15 mm
5STP 33L2800
ABB Semiconductors AG reserves the right to change specifications without notice.
Doc. No. 5SYA1011-03 Sep. 01 page 2 of 6
On-state
ITAVM Max. average on-state current 3740 A Half sine wave, TC = 70°C
ITRMS Max. RMS on-state current 5880 A
ITSM Max. peak non-repetitive 60000 A tp
=
10 ms Tj = 125°C
surge current 65000 A tp
=
8.3 ms After surge:
I2t Limiting load integral 18000 kA2stp
=
10 ms VD = VR = 0V
17500 kA2stp
=
8.3 ms
VTOn-state voltage 1.23 V IT
=
3000 A
VT0 Threshold voltage 0.95 V IT
=
2000 - 6000 A Tj = 125°C
rTSlope resistance 0.100 m
IHHolding current 30-100 mA T
j
=
25°C
15-60 mA T
j
=
125°C
ILLatching current 100-
500
mA T
j
=
25°C
100-
300
mA T
j
=
125°C
Switching
di/dtcrit Critical rate of rise of on-state 250 A/µs Cont. f = 50 Hz VD 0.67VDRM , Tj = 125°C
current 500 A/µs ITRM = 4500 A60 sec.
f = 50Hz IFG = 2 A, tr = 0.5 µs
tdDelay time 3.0 µs VD = 0.4VDRM IFG = 2 A, tr = 0.5 µs
tqTurn-off time 400 µs VD 0.67VDRM ITRM = 4500 A, Tj = 125°C
dvD/dt = 20V/µs VR > 200 V, diT/dt = -5 A/µs
Qrr Recovery charge min 2000 µAs
max 4000 µAs
Triggering
VGT Gate trigger voltage 2.6 V Tj = 25°
IGT Gate trigger current 400 mA Tj = 25°
VGD Gate non-trigger voltage 0.3 V VD =0.4 x VDRM
IGD Gate non-trigger current 10 mA VD = 0.4 x VDRM
VFGM Peak forward gate voltage 12 V
IFGM Peak forward gate current 10 A
VRGM Peak reverse gate voltage 10 V
PGGate power loss 3 W
5STP 33L2800
ABB Semiconductors AG reserves the right to change specifications without notice.
Doc. No. 5SYA1011-03 Sep. 01 page 3 of 6
Thermal
Tjmax Max. operating junction temperature
range
125 °C
Tstg Storage temperature range -40…140 °C
RthJC Thermal resistance 14 K/kW Anode side cooled
junction to case 14 K/kW Cathode side cooled
7 K/kW Double side cooled
RthCH Thermal resistance case to 3 K/kW Single side cooled
heat sink 1.5 K/kW Double side cooled
Analytical function for transient thermal
impedance:
)e-(1R = (t)Z
n
1i
t/-
ithJC i
å
=
τ
i1234
Ri(K/kW) 4.7 0.853 1.07 0.49
τi(s) 0.4787 0.0824 0.0104 0.0041
0.001 0.010 0.100 1.000 10.000
t[s]
0
1
2
3
4
5
6
7
8
Z
thJC
[K
kW]
TL1
180° sine: add 0.8 K/kW
180° rectangular: add 0.8 K/kW
120° rectangular: add 1 K/kW
60° rectangular: add 2 K/kW
F
m
= 63..84 kN
Double-side cooling
Fig. 1 Transient thermal impedance junction to case.
On-state characteristic model:
ITDiTCiTBAVT ++++= )1ln(
Valid for iT = 400 – 11000 A
ABCD
0.731174 0.000079 0.017903 0.002314
Fig. 2 On-state characteristics.
Tj=125°C, 10ms half sine
Fig. 3 On-state characteristics.
5STP 33L2800
ABB Semiconductors AG reserves the right to change specifications without notice.
Doc. No. 5SYA1011-03 Sep. 01 page 4 of 6
Fig. 4 On-state power dissipation vs. mean on-
state current. Turn - on losses excluded.
Fig. 5 Max. permissible case temperature vs.
mean on-state current.
Fig. 6 Surge on-state current vs. pulse length.
Half-sine wave.
Fig. 7 Surge on-state current vs. number of
pulses. Half-sine wave, 10 ms, 50Hz.
5STP 33L2800
ABB Semiconductors AG reserves the right to change specifications without notice.
Doc. No. 5SYA1011-03 Sep. 01 page 5 of 6
Fig. 8 Gate trigger characteristics. Fig. 9 Max. peak gate power loss.
Fig. 10 Recovery charge vs. decay rate of on-
state current.
Fig. 11 Peak reverse recovery current vs. decay
rate of on-state current.
Turn - off time, typical parameter relationship.
Fig. 12 tq/tq1 = f1(Tj) Fig. 13 tq/tq1 = f2(-diT/dt) Fig. 14 tq/tq1 = f3(dv/dt)
tq = tq1 f1(Tj) f2(-diT/dt) f3(dv/dt) tq1 :at normalized values (see page 2)
tq : at varying conditions
5STP 33L2800
ABB Semiconductors AG reserves the right to change specifications without notice.
ABB Semiconductors AG Doc. No. 5SYA1011-03 Sep. 01
Fabrikstrasse 3
CH-5600 Lenzburg, Switzerland
Telephone +41 (0)62 888 6419
Fax +41 (0)62 888 6306
Email abbsem@ch.abb.com
Internet www.abbsem.com
Turn-on and Turn-off losses
Fig. 15 Won = f(IT, tP), Tj = 125°C.
Half sinusoidal waves.
Fig. 16 Won = f(IT, di/dt), Tj = 125°C.
Rectangular waves.
Fig. 17 Woff = f(V0,IT), Tj = 125°C.
Half sinusoidal waves. tP = 10 ms.
Fig. 18 Woff = f(V0,di/dt), Tj = 125°C.
Rectangular waves.