1
File Number
1572.4
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
http://www.intersil.com or 407-727-9207 |Copyright © Intersil Corporation 1999
IRF430
4.5A, 500V, 1.500 Ohm, N-Channel
Power MOSFET
This N-Channel enhancement mode silicon gate power field
effect transistor is an advanced power MOSFET designed,
tested, and guaranteed to withstand a specified level of
energy in the breakdown avalanche mode of operation. All of
these power MOSFETs are designed for applications such
as switching regulators, switching convertors, motor drivers,
relay drivers, and drivers for high power bipolar switching
transistors requiring high speed and low gate drive power.
These types can be operated directly from integrated
circuits.
Formerly developmental type TA17415.
Features
4.5A, 500V
•r
DS(ON) = 1.500
Single Pulse Avalanche Energy Rated
SOA is Power Dissipation Limited
Nanosecond Switching Speeds
Linear Transfer Characteristics
High Input Impedance
Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
Packaging
JEDEC TO-204AA
Ordering Information
PART NUMBER PACKAGE BRAND
IRF430 TO-204AA IRF430
NOTE: When ordering, use the entire part number. G
D
S
DRAIN
(FLANGE)
SOURCE (PIN 2)
GATE (PIN 1)
Data Sheet March 1999
2
Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified
IRF430 UNITS
Drain to Source Breakdown Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDS 500 V
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR 500 V
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID
TC= 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID4.5
3.0 A
A
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM 18 A
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VGS ±20 V
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PD75 W
Dissipation Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 W/oC
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EAS 300 mJ
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ,T
STG -55 to 150 oC
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg 300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 125oC.
Electrical Specifications TC = 25oC, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V (Figure 10) 500 - - V
Gate Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA 2.0 - 4.0 V
Gate to Source Leakage Current IGSS VGS = ±20V ±100 nA
Zero Gate Voltage Drain Current IDSS VDS = Rated BVDSS, VGS = 0V - - 25 µA
VDS = 0.8 x Rated BVDSS,V
GS = 0V, TJ= 125oC - - 250 µA
On-State Drain Current (Note 2) ID(ON) VDS >I
D(ON) xr
DS(ON)MAX,V
GS = 10V (Figure 7) 4.5 - - A
Drain to Source On Resistance (Note 2) rDS(ON) ID = 2.5A, VGS = 10V (Figures 8, 9) - 1.3 1.500
Forward Transconductance (Note 2) gfs VDS 10V, ID = 2.7A (Figure 12) 2.5 3.2 - S
Turn-On Delay Time td(ON) VDD = 250V, ID 4.5A, RG = 12, RL = 50
(Figures 17, 18) MOSFET Switching Times are
Essentially Independent of Operating
Temperature
-1117ns
Rise Time tr-1523ns
Turn-Off Delay Time td(OFF) -3553ns
Fall Time tf-1523ns
Total Gate Charge
(Gate to Source + Gate to Drain) Qg(TOT) VGS = 10V, ID6.0A, VDS = 0.8 x Rated BVDSS,
Ig(REF) = 1.5mA (Figures 14, 19, 20) Gate
Charge is Essentially Independent of Operating
Temperature
-2232nC
Gate to Source Charge Qgs - 3.5 - nC
Gate to Drain “Miller” Charge Qgd -11- nC
Input Capacitance CISS VDS = 25V, VGS = 0V, f = 1MHz (Figure 11) - 600 - pF
Output Capacitance COSS - 100 - pF
Reverse Transfer Capacitance CRSS -30- pF
Internal Drain Inductance LDMeasured between the
Contact Screw on the
Flange that is Closer to
Source and Gate Pins
and the Center of Die
Modified MOSFET
Symbol Showing the
Internal Devices
Inductances
- 5.0 - nH
Internal Source Inductance LSMeasured from the
Source Lead, 6mm
(0.25in) from the Flange
and the Source Bonding
Pad
- 12.5 - nH
Thermal Resistance Junction to Case RθJC - - 0.83 oC/W
Thermal Resistance Junction to Ambient RθJA Free Air Operation - - 30 oC/W
LD
LS
D
S
G
IRF430
3
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Continuous Source to Drain Current ISD Modified MOSFET Symbol
Showing the Integral
Reverse P-N Junction Diode
- - 4.5 A
Pulse Source to Drain Current
(Note 3) ISDM - - 18 A
Source to Drain Diode Voltage (Note 2) VSD TJ = 25oC, ISD = 4.5A, VGS = 0V (Figure 13) - - 1.4 V
Reverse Recovery Time trr TJ = 25oC, ISD = 4.5A, dISD/dt = 100A/µs 180 370 760 ns
Reverse Recovery Charge QRR TJ = 25oC, ISD = 4.5A, dISD/dt = 100A/µs 0.96 2 4.3 µC
NOTES:
2. Pulse test: pulse width 300µs, duty cycle 2%.
3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. VDD = 50V, starting TJ= 25oC, L = 25mH, RG= 25Ω, peak IAS = 4.5A. See Figures 15, 16.
Typical Performance Curves
Unless Otherwise Specified
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE
G
D
S
0 50 100 150
0
TC, CASE TEMPERATURE (oC)
POWER DISSIPATION MULTIPLIER
0.2
0.4
0.6
0.8
1.0
1.2
TC, CASE TEMPERATURE (oC)
50 75 100 15025
5
4
3
0
2
ID, DRAIN CURRENT (A)
1
125
ZθJC, TRANSIENT
1.0
0.1
0.01 10-2
10-5 10-4 10-3 0.1 1 10
t1, RECTANGULAR PULSE DURATION (s)
PDM
t1t2
2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC + TC
SINGLE PULSE
0.02
0.05
0.2
0.5
0.1
0.01
THERMAL IMPEDANCE (oC/W)
IRF430
4
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. OUTPUT CHARACTERISTICS
FIGURE 6. SATURATION CHARACTERISTICS FIGURE 7. TRANSFER CHARACTERISTICS
NOTE: Heating effect of 2µs pulse is minimal.
FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT FIGURE 9. NORMALIZED DRAIN TO SOURCE
ON RESISTANCE vs JUNCTION TEMPERATURE
Typical Performance Curves
Unless Otherwise Specified (Continued)
100
10
1
10001 10 100
0.1
ID, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VOLTAGE (V)
TC = 25oC
TJ= MAX RATED
SINGLE PULSE
10µs
100µs
1ms
10ms
DC
100ms
OPERATION IN THIS
AREA IS LIMITED
BY rDS(ON)
VDS, DRAIN TO SOURCE VOLTAGE (V)
1000 300
6
4
3
0
2
ID, DRAIN CURRENT (A)
1
200
VGS = 4.5V
580µs PULSE TEST
VGS = 4V
VGS = 5V
VGS = 5.5V
VGS = 10V
5
4
3
0
2
2468010
ID, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VOLTAGE (V)
1
80µs PULSE TEST
VGS = 4.5V
VGS = 5V
VGS = 5.5V
VGS = 10V
VGS = 4V
5
0123405
ID(ON), ON-STATE DRAIN CURRENT (A)
VGS, GATE TO SOURCE VOLTAGE (V)
1
2
VDS > ID(ON) x rDS(ON) MAX
80µs PULSE TEST
DUTY CYCLE 2%
125oC
25oC
67
3
4
-55oC
ID, DRAIN CURRENT (A)
10 20025
4
3
1
2
rDS(ON), DRAIN TO SOURCE ON RESISTANCE
VGS = 20V
VGS = 10V
515
2.2
1.4
0.6
060-60 TJ, JUNCTION TEMPERATURE (oC)
NORMALIZED DRAI TO SOURCE
ID = 1.5A
1.8
1.0
0.2 -40 -20 20 40 80 100 140120
VGS = 10V
ON RESISTANCE
IRF430
5
FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
Typical Performance Curves
Unless Otherwise Specified (Continued)
1.25
1.05
0.85
0 160
TJ, JUNCTION TEMPERATURE (oC)
NORMALIZED DRAIN TO SOURCE
1.15
0.95
0.75
-40 40 80 120
BREAKDOWN VOLTAGE
ID = 250µA
VDS, DRAIN TO SOURCE VOLTAGE (V)
C, CAPACITANCE (pF)
2000
1600
1200
800
400
0
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS CDS + CGD
CISS
COSS
110 20 30 40 50
CRSS
ID, DRAIN CURRENT (A)
123405
5
4
3
0
2
gfs, TRANSCONDUCTANCE (S)
1
TJ = 125oC
TJ = 25oC
TJ = -55oC
80µs PULSE TEST
ISD, SOURCE TO DRAIN CURRENT (A)
VSD, SOURCE TO DRAIN VOLTAGE (V)
100
10
101234
TJ = 150oC
TJ = 25oC
80µs PULSE TEST
Qg(TOT), TOTAL GATE CHARGE (nC)
8162432040
20
10
0
VGS, GATE TO SOURCE VOLTAGE (V)
5
ID = 4.5A
15 VDS = 100V
VDS = 250V
VDS = 400V
IRF430
6
Test Circuits and Waveforms
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 16. UNCLAMPED ENERGY WAVEFORMS
FIGURE 17. SWITCHING TIME TEST CIRCUIT FIGURE 18. RESISTIVE SWITCHING WAVEFORMS
FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS
tP
VGS
0.01
L
IAS
+
-
VDS
VDD
RG
DUT
VARY tP TO OBTAIN
REQUIRED PEAK IAS
0V
VDD
VDS
BVDSS
tP
IAS
tAV
0
VGS
RL
RG
DUT
+
-VDD
tON
td(ON)
tr
90%
10%
VDS 90%
10%
tf
td(OFF)
tOFF
90%
50%
50%
10% PULSE WIDTH
VGS
0
0
0.3µF
12V
BATTERY 50k
VDS
S
DUT
D
G
Ig(REF)
0
(ISOLATED
VDS
0.2µF
CURRENT
REGULATOR
ID CURRENT
SAMPLING
IG CURRENT
SAMPLING
SUPPLY)
RESISTOR RESISTOR
SAME TYPE
AS DUT Qg(TOT)
Qgd
Qgs
VDS
0
VGS
VDD
IG(REF)
0
IRF430
7
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is gr anted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see w eb site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029
IRF430