[ /Title (CD54 HC245 , CD54 HCT24 5, CD74 HC245 , CD74 HCT24 5) /Subject (High Speed CD54HC245, CD74HC245, CD54HCT245, CD74HCT245 Data sheet acquired from Harris Semiconductor SCHS119A November 1997 - Revised May 2003 High-Speed CMOS Logic Octal-Bus Transceiver, Three-State, Non-Inverting Features Description * Buffered Inputs The CD54HC245, CD54HCT245, and CD74HC245, CD74HCT245 are high-speed octal three-state bidirectional transceivers intended for two-way asynchronous communication between data buses. They have high drive current outputs which enable high-speed operation while driving large bus capacitances. They provide the low power consumption of standard CMOS circuits with speeds and drive capabilities comparable to that of LSTTL circuits. * Three-State Outputs * Bus Line Driving Capability * Typical Propagation Delay (A to B, B to A) 9ns at VCC = 5V, CL = 15pF, TA = 25oC * Fanout (Over Temperature Range) - Standard Outputs . . . . . . . . . . . . . . . 10 LSTTL Loads - Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads The CD54HC245, CD54HCT245, CD74HC245 and CD74HCT245 allow data transmission of the B bus or from the B bus to the A bus. The logic level at the direction input (DIR) determines the direction. The output enable input (OE), when high, puts the I/O ports in the high-impedance state. * Wide Operating Temperature Range . . . -55oC to 125oC * Balanced Propagation Delay and Transition Times * Significant Power Reduction Compared to LSTTL Logic ICs The HC/HCT245 is similar in operation to the HC/HCT640 and the HC/HCT643. * HC Types - 2V to 6V Operation - High Noise Immunity: NIL = 30%, NIH = 30% of VCC at VCC = 5V Ordering Information PART NUMBER * HCT Types - 4.5V to 5.5V Operation - Direct LSTTL Input Logic Compatibility, VIL= 0.8V (Max), VIH = 2V (Min) - CMOS Input Compatibility, Il 1A at VOL, VOH Pinout CD54HC245, CD54HCT245 (CERDIP) CD74HC245, CD74HCT245 (PDIP, SOIC) TOP VIEW TEMP. RANGE (oC) PACKAGE CD54HC245F3A -55 to 125 20 Ld CERDIP CD54HCT245F3A -55 to 125 20 Ld CERDIP CD74HC245E -55 to 125 20 Ld PDIP CD74HC245M -55 to 125 20 Ld SOIC CD74HC245M96 -55 to 125 20 Ld SOIC CD74HCT245E -55 to 125 20 Ld PDIP CD74HCT245M -55 to 125 20 Ld SOIC CD74HCT245M96 -55 to 125 20 Ld SOIC NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and reel. DIR 1 A0 2 19 OE A1 3 18 B0 A2 4 17 B1 A3 5 16 B2 A4 6 15 B3 A5 7 14 B4 A6 8 13 B5 A7 9 12 B6 GND 10 11 B7 20 VCC CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. Copyright (c) 2003, Texas Instruments Incorporated 1 CD54HC245, CD74HC245, CD54HCT245, CD74HCT245 Functional Diagram A0 A1 A2 A3 A4 A5 A6 A7 2 18 3 17 4 16 5 15 6 14 7 13 8 12 9 11 1 DIR OE 19 TRUTH TABLE CONTROL INPUTS OE DIR OPERATION L L B Data to A Bus L H A Data to B Bus H X Isolation H = High Level, L = Low Level, X = Irrelevant To prevent excess currents in the High-Z (Isolation) modes all I/O terminals should be terminated with 10k to 1M resistors. 2 B0 B1 B2 B3 B4 B5 B6 B7 CD54HC245, CD74HC245, CD54HCT245, CD74HCT245 Absolute Maximum Ratings Thermal Information DC Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 7V DC Input Diode Current, IIK For VI < -0.5V or VI > VCC + 0.5V . . . . . . . . . . . . . . . . . . . . . .20mA DC Output Diode Current, IOK For VO < -0.5V or VO > VCC + 0.5V . . . . . . . . . . . . . . . . . . . .20mA DC Drain Current, per Output, IO For -0.5V < VO < VCC + 0.5V. . . . . . . . . . . . . . . . . . . . . . . . . .35mA DC Output Source or Sink Current per Output Pin, IO For VO > -0.5V or VO < VCC + 0.5V . . . . . . . . . . . . . . . . . . . .25mA DC VCC or Ground Current, ICC . . . . . . . . . . . . . . . . . . . . . . . . .50mA Thermal Resistance (Typical, Note 1). . . . . . . . . . . . . . . . . JA (oC/W) E (PDIP) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 M (SOIC) Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150oC Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300oC (SOIC - Lead Tips Only) Operating Conditions Temperature Range, TA . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC Supply Voltage Range, VCC HC Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2V to 6V HCT Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.5V to 5.5V DC Input or Output Voltage, VI, VO . . . . . . . . . . . . . . . . . 0V to VCC Input Rise and Fall Time 2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000ns (Max) 4.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500ns (Max) 6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400ns (Max) CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. 1. The package thermal impedance is calculated in accordance with JESD 51-7. DC Electrical Specifications TEST CONDITIONS 25oC -40oC TO 85oC -55oC TO 125oC SYMBOL VI (V) IO (mA) VCC (V) High Level Input Voltage VIH - - 2 1.5 - - 1.5 - 1.5 - V 4.5 3.15 - - 3.15 - 3.15 - V Low Level Input Voltage VIL PARAMETER MIN TYP MAX MIN MAX MIN MAX UNITS HC TYPES High Level Output Voltage CMOS Loads VOH - VIH or VIL High Level Output Voltage TTL Loads Low Level Output Voltage CMOS Loads VOL VIH or VIL Low Level Output Voltage TTL Loads Input Leakage Current Quiescent Device Current - 6 4.2 - - 4.2 - 4.2 - V 2 - - 0.5 - 0.5 - 0.5 V 4.5 - - 1.35 - 1.35 - 1.35 V 6 - - 1.8 - 1.8 - 1.8 V -0.02 2 1.9 - - 1.9 - 1.9 - V -0.02 4.5 4.4 - - 4.4 - 4.4 - V -0.02 6 5.9 - - 5.9 - 5.9 - V - - - - - - - - - V -4 4.5 3.98 - - 3.84 - 3.7 - V -5.2 6 5.48 - - 5.34 - 5.2 - V 0.02 2 - - 0.1 - 0.1 - 0.1 V 0.02 4.5 - - 0.1 - 0.1 - 0.1 V 0.02 6 - - 0.1 - 0.1 - 0.1 V - - - - - - - - - V 4 4.5 - - 0.26 - 0.33 - 0.4 V 5.2 6 - - 0.26 - 0.33 - 0.4 V II VCC or GND - 6 - - 0.1 - 1 - 1 A ICC VCC or GND 0 6 - - 8 - 80 - 160 A 3 CD54HC245, CD74HC245, CD54HCT245, CD74HCT245 DC Electrical Specifications (Continued) TEST CONDITIONS 25oC -40oC TO 85oC -55oC TO 125oC VCC (V) MIN TYP MAX MIN MAX MIN MAX UNITS PARAMETER SYMBOL VI (V) IO (mA) Three-State Leakage Current IOZ VIL or VIH VO = VCC or GND 6 - - 0.5 - 5 - 10 A High Level Input Voltage VIH - - 4.5 to 5.5 2 - - 2 - 2 - V Low Level Input Voltage VIL - - 4.5 to 5.5 - - 0.8 - 0.8 - 0.8 V High Level Output Voltage CMOS Loads VOH VIH or VIL -0.02 4.5 4.4 - - 4.4 - 4.4 - V -4 4.5 3.98 - - 3.84 - 3.7 - V 0.02 4.5 - - 0.1 - 0.1 - 0.1 V 4 4.5 - - 0.26 - 0.33 - 0.4 V HCT TYPES High Level Output Voltage TTL Loads Low Level Output Voltage CMOS Loads VOL VIH or VIL Low Level Output Voltage TTL Loads II VCC and GND 0 5.5 - - 0.1 - 1 - 1 A Quiescent Device Current ICC VCC or GND 0 5.5 - - 8 - 80 - 160 A Three-State Leakage Current IOZ VIL or VIH VO = VCC or GND 6 - - 0.5 - 5 - 10 A Additional Quiescent Device Current Per Input Pin: 1 Unit Load ICC (Note 2) VCC -2.1 - 4.5 to 5.5 - 100 360 - 450 - 490 A Input Leakage Current NOTE: 2. For dual-supply systems theoretical worst case (VI = 2.4V, VCC = 5.5V) specification is 1.8mA. HCT Input Loading Table INPUT UNIT LOADS An or Bn 0.4 OE 1.5 DIR 0.9 NOTE: Unit Load is ICC limit specified in DC Electrical Table, e.g., 360A max at 25oC. 4 CD54HC245, CD74HC245, CD54HCT245, CD74HCT245 Switching Specifications PARAMETER CL = 50pF, Input tr, tf = 6ns SYMBOL TEST CONDITIONS tPHL, tPLH CL = 50pF -40oC TO 85oC 25oC -55oC TO 125oC VCC (V) MIN TYP MAX MIN MAX MIN MAX UNITS 2 - - 110 - 140 - 165 ns 4.5 - - 22 - 28 - 33 ns CL = 15pF 5 - 9 - - - - - ns CL = 50pF 6 - - 19 - 24 - 28 ns CL = 50pF 2 - - 150 - 190 - 225 ns 4.5 - - 30 - 38 - 45 ns CL = 15pF 5 - 12 - - - - - ns CL = 50pF 6 - - 26 - 33 - 38 ns CL = 50pF 2 - - 150 - 190 - 225 ns 4.5 - - 30 - 38 - 45 ns CL = 15pF 5 - 12 - - - - - ns CL = 50pF 6 - - 26 - 33 - 38 ns CL = 50pF 2 - - 60 - 75 - 90 ns 4.5 - - 12 - 15 - 18 ns 6 - - 10 - 13 - 15 ns HC TYPES Propagation Delay Data to Output Output Disable to Output Output Enable to Output Output Transition Time tPHL, tPLH tPHL, tPLH tTHL, tTLH Input Capacitance CIN CL = 50pF - 10 - 10 - 10 - 10 pF Three-State Output Capacitance CO - - - - 20 - 20 - 20 pF Power Dissipation Capacitance (Notes 3, 4) CPD - 5 - 53 - - - - - pF tPHL, tPLH CL = 50pF 4.5 - - 26 - 33 - 39 ns CL = 15pF 5 - 10 - - - - - ns CL = 50pF 4.5 - - 30 - 38 - 45 ns CL = 15pF 5 - 12 - - - - - ns CL = 50pF 4.5 - - 32 - 40 - 48 ns CL = 15pF 5 - 13 - - - - - ns tTHL, tTLH CL = 50pF 4.5 - - 12 - 15 - 18 ns Input Capacitance CIN CL = 50pF - 10 - 10 - 10 - 10 pF Three-State Output Capacitance CO - - - - 20 - 20 - 20 pF Power Dissipation Capacitance (Notes 3, 4) CPD - 5 - 55 - - - - - pF HCT TYPES Propagation Delay Data to Output Output Disable to Output Output Enable to Output Output Transition Time tPHL, tPLH tPHL, tPLH NOTES: 3. CPD is used to determine the dynamic power consumption, per channel. 4. PD = VCC2 fi (CPD + CL) where fi = Input Frequency, CL = Output Load Capacitance, VCC = Supply Voltage. 5 CD54HC245, CD74HC245, CD54HCT245, CD74HCT245 Test Circuits and Waveforms tr = 6ns tf = 6ns 90% 50% 10% INPUT GND tTLH tPHL 6ns tr VCC 90% 10% OUTPUTS ENABLED tPZH OUTPUT HIGH TO OFF FIGURE 3. HC THREE-STATE PROPAGATION DELAY WAVEFORM OTHER INPUTS TIED HIGH OR LOW OUTPUT DISABLE IC WITH THREESTATE OUTPUT GND 1.3V tPZH 90% OUTPUTS ENABLED OUTPUTS ENABLED 0.3 10% tPHZ 50% 3V tPZL tPLZ 90% OUTPUTS DISABLED 6ns 2.7 1.3 OUTPUT LOW TO OFF 50% tPHZ tf GND 10% OUTPUT HIGH TO OFF 6ns OUTPUT DISABLE tPZL tPLZ tPLH FIGURE 2. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC 6ns OUTPUT LOW TO OFF 1.3V 10% INVERTING OUTPUT FIGURE 1. HC TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC 50% tTLH 90% tPLH tPHL GND tTHL 90% 50% 10% INVERTING OUTPUT 3V 2.7V 1.3V 0.3V INPUT tTHL OUTPUT DISABLE tf = 6ns tr = 6ns VCC 1.3V OUTPUTS DISABLED OUTPUTS ENABLED FIGURE 4. HCT THREE-STATE PROPAGATION DELAY WAVEFORM OUTPUT RL = 1k CL 50pF VCC FOR tPLZ AND tPZL GND FOR tPHZ AND tPZH NOTE: Open drain waveforms tPLZ and tPZL are the same as those for three-state shown on the left. The test circuit is Output RL = 1k to VCC, CL = 50pF. FIGURE 5. HC AND HCT THREE-STATE PROPAGATION DELAY TEST CIRCUIT 6 PACKAGE OPTION ADDENDUM www.ti.com 15-Oct-2009 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty Lead/Ball Finish MSL Peak Temp (3) CD54HC245F ACTIVE CDIP J 20 1 TBD A42 N / A for Pkg Type CD54HC245F3A ACTIVE CDIP J 20 1 TBD A42 N / A for Pkg Type CD54HCT245F ACTIVE CDIP J 20 1 TBD A42 N / A for Pkg Type CD54HCT245F3A ACTIVE CDIP J 20 1 TBD A42 N / A for Pkg Type CD74HC245E ACTIVE PDIP N 20 20 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type CD74HC245EE4 ACTIVE PDIP N 20 20 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type CD74HC245M ACTIVE SOIC DW 20 25 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC245M96 ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC245M96E4 ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC245M96G4 ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC245ME4 ACTIVE SOIC DW 20 25 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC245MG4 ACTIVE SOIC DW 20 25 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HCT245E ACTIVE PDIP N 20 20 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type CD74HCT245EE4 ACTIVE PDIP N 20 20 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type CD74HCT245M ACTIVE SOIC DW 20 25 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HCT245M96 ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HCT245M96E4 ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HCT245M96G4 ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HCT245ME4 ACTIVE SOIC DW 20 25 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HCT245MG4 ACTIVE SOIC DW 20 25 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 15-Oct-2009 Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 11-Mar-2008 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel Diameter Width (mm) W1 (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant CD74HC245M96 SOIC DW 20 2000 330.0 24.4 10.8 13.0 2.7 12.0 24.0 Q1 CD74HCT245M96 SOIC DW 20 2000 330.0 24.4 10.8 13.0 2.7 12.0 24.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 11-Mar-2008 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) CD74HC245M96 SOIC DW 20 2000 346.0 346.0 41.0 CD74HCT245M96 SOIC DW 20 2000 346.0 346.0 41.0 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP(R) Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap Wireless Connectivity www.ti.com/wirelessconnectivity TI E2E Community Home Page e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright (c) 2012, Texas Instruments Incorporated