LP3855-ADJ
VIN VOUT
ADJ
GND
*CIN
*COUT
INPUT OUTPUT
1.5A
R1**
R2**
CFF**
**
VOUT = 1.216 x (1+ R1
R2 )
SDSD
10 PF
10 PF
* TANTALUM OR
CERAMIC
LP3855-ADJ
www.ti.com
SNVS244F SEPTEMBER 2003REVISED APRIL 2013
LP3855-ADJ 1.5A Fast Response Ultra Low Dropout Linear Regulators
Check for Samples: LP3855-ADJ
1FEATURES DESCRIPTION
The LP3855-ADJ fast ultra low-dropout linear
2 Ultra Low Dropout Voltage regulators operate from a +2.5V to +7.0V input
Stable with Selected Ceramic Capacitors supply. These ultra low dropout linear regulators
Low Ground Pin Current respond very quickly to step changes in load, which
makes them suitable for low voltage microprocessor
Load Regulation of 0.06% applications. The LP3855-ADJ is developed on a
10nA Quiescent Current in Shutdown Mode CMOS process which allows low quiescent current
Specified Output Current of 1.5A DC operation independent of output load current. This
CMOS process also allows the LP3855-ADJ to
Available in DDPAK/TO-263, TO-220 and SOT- operate under extremely low dropout conditions.
223 Packages
Overtemperature/Overcurrent Protection Dropout Voltage: Ultra low dropout voltage; typically
24mV at 150mA load current and 240mV at 1.5A load
40°C to +125°C Junction Temperature Range current.
APPLICATIONS Ground Pin Current: Typically 4mA at 1.5A load
current.
Microprocessor Power Supplies Shutdown Mode: Typically 10nA quiescent current
GTL, GTL+, BTL, and SSTL Bus Terminators when the shutdown pin is pulled low.
Power Supplies for DSPs Adjustable Output Voltage: The output voltage may
SCSI Terminator be programmed via two external resistors.
Post Regulators
High efficiency linear regulators
Battery chargers
Other battery powered applications
TYPICAL APPLICATION CIRCUIT
**See Application Hints.
1Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
2All trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date. Copyright © 2003–2013, Texas Instruments Incorporated
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
1 2 34
5
SD VIN VOUT
GND
ADJ
LP3855-ADJ
SNVS244F SEPTEMBER 2003REVISED APRIL 2013
www.ti.com
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
CONNECTION DIAGRAM
Top View Top View
Figure 1. TO-220-5 Package Figure 2. DDPAK/TO-263-5 Package
Bent, Staggered Leads See Package Number KTT0005B
See Package Number NDH0005D
Top View
Figure 3. SOT-223-5 Package
See Package Number NDC0005A
Table 1. PIN DESCRIPTIONS FOR TO-220-5 and DDPAK/TO-263-5 Packages
LP3855-ADJ
Pin # Name Function
1 SD Shutdown
2 VIN Input Supply
3 GND Ground
4 VOUT Output Voltage
5 ADJ Set Output Voltage
Table 2. PIN DESCRIPTIONS for SOT-223-5 Package
LP3855-ADJ
Pin # Name Function
1 SD Shutdown
2 VIN Input Supply
3 VOUT Output Voltage
4 ADJ Set Output Voltage
5 GND Ground
2Submit Documentation Feedback Copyright © 2003–2013, Texas Instruments Incorporated
Product Folder Links: LP3855-ADJ
LP3855-ADJ
www.ti.com
SNVS244F SEPTEMBER 2003REVISED APRIL 2013
BLOCK DIAGRAM
Figure 4. LP3855-ADJ
ABSOLUTE MAXIMUM RATINGS (1)
If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/Distributors for
availability and specifications.
Storage Temperature Range 65°C to +150°C
Lead Temperature (Soldering, 5 sec.) 260°C
ESD Rating (2) 2 kV
Power Dissipation (3) Internally Limited
Input Supply Voltage (Survival) 0.3V to +7.5V
Shutdown Input Voltage (Survival) 0.3V to 7.5V
Output Voltage (Survival), (4),(5) 0.3V to +6.0V
IOUT (Survival) Short Circuit Protected
(1) Absolute maximum ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which
the device is intended to be functional, but does not ensure specific performance limits. For specifications and test conditions, see
Electrical Characteristics. The specifications apply only for the test conditions listed. Some performance characteristics may degrade
when the device is not operated under the listed test conditions.
(2) The human body model is a 100pF capacitor discharged through a 1.5kresistor into each pin.
(3) At elevated temperatures, devices must be derated based on package thermal resistance. The devices in TO-220 package must be
derated at θjA = 50°C/W (with 0.5in2, 1oz. copper area), junction-to-ambient (with no heat sink). The devices in the DDPAK/TO-263
surface-mount package must be derated at θjA = 60°C/W (with 0.5in2, 1oz. copper area), junction-to-ambient. See Application Hints.
(4) If used in a dual-supply system where the regulator load is returned to a negative supply, the output must be diode-clamped to ground.
(5) The output PMOS structure contains a diode between the VIN and VOUT terminals. This diode is normally reverse biased. This diode will
get forward biased if the voltage at the output terminal is forced to be higher than the voltage at the input terminal. This diode can
typically withstand 200mA of DC current and 1Amp of peak current.
RECOMMENDED OPERATING CONDITIONS
Input Supply Voltage (Operating), (1) 2.5V to 7.0V
Shutdown Input Voltage (Operating) 0.3V to 7.0V
Maximum Operating Current (DC) 1.5A
Operating Junction Temp. Range 40°C to +125°C
(1) The minimum operating value for VIN is equal to either [VOUT(NOM) + VDROPOUT] or 2.5V, whichever is greater.
Copyright © 2003–2013, Texas Instruments Incorporated Submit Documentation Feedback 3
Product Folder Links: LP3855-ADJ
LP3855-ADJ
SNVS244F SEPTEMBER 2003REVISED APRIL 2013
www.ti.com
ELECTRICAL CHARACTERISTICS LP3855-ADJ
Limits in standard typeface are for TJ= 25°C, and limits in boldface type apply over the full operating temperature range.
Unless otherwise specified: VIN = VO(NOM) + 1V, IL= 10 mA, COUT = 10µF, VSD = 2V. LP3855-ADJ(2)
Symbol Parameter Conditions Typ (1) Units
Min Max
VOUT +1V VIN7V 1.198 1.234
VADJ Adjust Pin Voltage 1.216 V
10 mA IL1.5A 1.180 1.253
VOUT +1V VIN7V
IADJ Adjust Pin Input Current 10 100 nA
10 mA IL1.5A
Output Voltage Line 0.02
ΔVOL VOUT +1V VIN 7.0V %
Regulation (3) 0.06
Output Voltage Load 0.06
ΔVO/ΔIOUT 10 mA IL1.5A %
0.12
Regulation(3)
35
IL= 150 mA 24
Dropout Voltage, 45
DDPAK/TO-263 and TO- 310
220(4) IL= 1.5A 240 mV
420
VIN - VOUT 35
IL= 150 mA 26 45
Dropout Voltage,
SOT 223(4)(5) 320
IL= 1.5A 260 435
9
IL= 150 mA 3 10
Ground Pin Current In
IGND mA
Normal Operation Mode 9
IL= 1.5A 3 10
VSD 0.3V 0.01 10
Ground Pin Current In
IGND µA
Shutdown Mode -40°C TJ85°C 50
IO(PK) Peak Output Current VOVO(NOM) - 4% 1.8 A
Short Circuit Protection
ISC Short Circuit Current 3.2 A
Shutdown Input
VSDT Rising from 0.3V 1.3 2
until Output = ON
VSDT Shutdown Threshold V
VSDT Falling from 2.0V 1.3 0.3
until Output = OFF
TdOFF Turn-off delay IL= 1.5A 20 µs
TdON Turn-on delay IL= 1.5A 25 µs
ISD SD Input Current VSD = VIN 1 nA
AC Parameters
VIN = VOUT + 1V, COUT = 10uF 73
VOUT = 3.3V, f = 120Hz
PSRR Ripple Rejection dB
VIN = VOUT + 0.5V, COUT = 10uF 57
VOUT = 3.3V, f = 120Hz
ρn(l/f) Output Noise Density f = 120Hz 0.8 µV
BW = 10Hz 100kHz, VOUT = 2.5V 150
enOutput Noise Voltage µV (rms)
BW = 300Hz 300kHz, VOUT = 2.5V 100
(1) Typical numbers are at 25°C and represent the most likely parametric norm.
(2) Limits are specified by testing, design, or statistical correlation.
(3) Output voltage line regulation is defined as the change in output voltage from the nominal value due to change in the input line voltage.
Output voltage load regulation is defined as the change in output voltage from the nominal value due to change in load current.
(4) Dropout voltage is defined as the minimum input to output differential voltage at which the output drops 2% below the nominal value.
Dropout voltage specification applies only to output voltages of 2.5V and above. For output voltages below 2.5V, the drop-out voltage is
nothing but the input to output differential, since the minimum input voltage is 2.5V.
(5) The SOT-223 package devices have slightly higher dropout due to increased bond wire resistance.
4Submit Documentation Feedback Copyright © 2003–2013, Texas Instruments Incorporated
Product Folder Links: LP3855-ADJ
-40 -20 0 20 40 60 80 100 125
JUNCTION TEMPERATURE (oC)
0
0.5
1
1.5
2
2.5
3
'VOUT/V CHANGE IN VIN (mV)
VIN (V)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
VOUT (V)
125oC
25oC
-40oC
-40 -20 0 20 40 60 80 100 125
JUNCTION TEMPERATURE (oC)
0
0.5
1
1.5
2
2.5
3
DC LOAD REGULATION (mV/A)
SHUTDOWN IQ (PA)
TEMPERATURE (oC)
-40 -20 0 20 40 60 80 100 125
0.001
0.01
0.1
1
10
1.8 2.3 2.8 3.3 3.8 4.3 4.8
OUTPUT VOLTAGE (V)
0
1
2
3
4
5
6
GROUND PIN CURRENT (mA)_
0 0.5 11.5
0
100
200
300
400
500
600
OUTPUT LOAD CURRENT (A)
DROPOUT VOLTAGE (mV)
25oC
-40oC
125oC
LP3855-ADJ
www.ti.com
SNVS244F SEPTEMBER 2003REVISED APRIL 2013
TYPICAL PERFORMANCE CHARACTERISTICS
Unless otherwise specified: TJ= 25°C, COUT = 10µF, CIN = 10µF, S/D pin is tied to VIN, VOUT = 2.5V, VIN = VO(NOM) + 1V, IL=
10 mA.
Ground Current vs Output Voltage
Dropout Voltage vs Output Load Current IL= 1.5A
Figure . Figure 5.
Shutdown IQvs Junction Temperature DC Load Reg. vs Junction Temperature
Figure 6. Figure 7.
VIN
vs
DC Line Regulation vs Temperature VOUT Over Temperature
Figure 8. Figure 9.
Copyright © 2003–2013, Texas Instruments Incorporated Submit Documentation Feedback 5
Product Folder Links: LP3855-ADJ
VOUT
100mV/DIV
ILOAD
1A/DIV
TIME (50Ps/DIV)
MAGNITUDE
VOUT
100mV/DIV
ILOAD
1A/DIV
TIME (50Ps/DIV)
MAGNITUDE
VOUT
100mV/DIV
ILOAD
1A/DIV
TIME (50Ps/DIV)
MAGNITUDE
VOUT
100mV/DIV
ILOAD
1A/DIV
TIME (50Ps/DIV)
MAGNITUDE
VOUT
100mV/DIV
ILOAD
1A/DIV
TIME (50Ps/DIV)
MAGNITUDE
LP3855-ADJ
SNVS244F SEPTEMBER 2003REVISED APRIL 2013
www.ti.com
TYPICAL PERFORMANCE CHARACTERISTICS (continued)
Unless otherwise specified: TJ= 25°C, COUT = 10µF, CIN = 10µF, S/D pin is tied to VIN, VOUT = 2.5V, VIN = VO(NOM) + 1V, IL=
10 mA. Noise
vs Load Transient Response
Frequency (CIN = COUT = 10µF,OSCON)
Figure 10. Figure 11.
Load Transient Response Load Transient Response
(CIN = COUT = 100µF,OSCON) (CIN = COUT = 100µF,POSCAP)
Figure 12. Figure 13.
Load Transient Response Load Transient Response
(CIN = COUT = 10µF,TANTALUM) (CIN = COUT = 100µF,TANTALUM)
Figure 14. Figure 15.
6Submit Documentation Feedback Copyright © 2003–2013, Texas Instruments Incorporated
Product Folder Links: LP3855-ADJ
2
1
IOUT
@ 1A
VOUT
@ 2.5V
T
T
TIME (1 Ps/DIV)
2
1
IOUT
@ 1A
T
T
IOUT
1A/DIV
VOUT
100 mV/DIV VOUT = 2.5V
TIME (2 Ps/DIV)
LP3855-ADJ
www.ti.com
SNVS244F SEPTEMBER 2003REVISED APRIL 2013
TYPICAL PERFORMANCE CHARACTERISTICS (continued)
Unless otherwise specified: TJ= 25°C, COUT = 10µF, CIN = 10µF, S/D pin is tied to VIN, VOUT = 2.5V, VIN = VO(NOM) + 1V, IL=
10 mA. Load Transient Response Load Transient Response
CIN = 2 x 10µF CERAMIC CIN = 2 x 10µF CERAMIC
COUT = 2 x 10µF CERAMIC COUT = 2 x 10µF CERAMIC
Figure 16. Figure 17.
Copyright © 2003–2013, Texas Instruments Incorporated Submit Documentation Feedback 7
Product Folder Links: LP3855-ADJ
COUT ESR (:)
LOAD CURRENT (A)
STABLE REGION
COUT > 10 PF
012
.001
.01
0.1
1.0
10
LP3855-ADJ
SNVS244F SEPTEMBER 2003REVISED APRIL 2013
www.ti.com
Application Hints
SETTING THE OUTPUT VOLTAGE
The output voltage is set using the resistors R1 and R2 (see Typical Application Circuit). The output is also
dependent on the reference voltage (typically 1.216V) which is measured at the ADJ pin. The output voltage is
given by the equation:
VOUT = VADJ x ( 1 + R1 / R2) (1)
This equation does not include errors due to the bias current flowing in the ADJ pin which is typically about 10
nA. This error term is negligible for most applications. If R1 is > 100k, a small error may be introduced by the
ADJ bias current.
The tolerance of the external resistors used contributes a significant error to the output voltage accuracy, with 1%
resistors typically adding a total error of approximately 1.4% to the output voltage (this error is in addition to the
tolerance of the reference voltage at VADJ).
TURN-ON CHARACTERISTICS FOR OUTPUT VOLTAGES PROGRAMMED TO 2.0V OR BELOW
As Vin increases during start-up, the regulator output will track the input until Vin reaches the minimum operating
voltage (typically about 2.2V). For output voltages programmed to 2.0V or below, the regulator output may
momentarily exceed its programmed output voltage during start up. Outputs programmed to voltages above 2.0V
are not affected by this behavior.
EXTERNAL CAPACITORS
Like any low-dropout regulator, external capacitors are required to assure stability. these capacitors must be
correctly selected for proper performance.
INPUT CAPACITOR: An input capacitor of at least 10µF is required. Ceramic or Tantalum may be used, and
capacitance may be increased without limit
OUTPUT CAPACITOR: An output capacitor is required for loop stability. It must be located less than 1 cm from
the device and connected directly to the output and ground pins using traces which have no other currents
flowing through them (see PCB Layout section).
The minimum amount of output capacitance that can be used for stable operation is 10µF. For general usage
across all load currents and operating conditions, the part was characterized using a 10µF Tantalum input
capacitor. The minimum and maximum stable ESR range for the output capacitor was then measured which kept
the device stable, assuming any output capacitor whose value is greater than 10µF (see Figure 18 below).
Figure 18. ESR Curve for COUT (with 10µF Tantalum Input Capacitor)
It should be noted that it is possible to operate the part with an output capacitor whose ESR is below these limits,
assuming that sufficient ceramic input capacitance is provided. This will allow stable operation using ceramic
output capacitors (see next section).
8Submit Documentation Feedback Copyright © 2003–2013, Texas Instruments Incorporated
Product Folder Links: LP3855-ADJ
MAX. ALLOWABLE CERAMIC
OUTPUT CAPACITANCE (PF)
CERAMIC INPUT CAPACITANCE (PF)
100 1000
10
100
IL = 1.5A
LP3855-ADJ
www.ti.com
SNVS244F SEPTEMBER 2003REVISED APRIL 2013
OPERATION WITH CERAMIC OUTPUT CAPACITORS
LP385X voltage regulators can operate with ceramic output capacitors if the values of the input and output
capacitors are selected appropriately. The total ceramic output capacitance must be equal to or less than a
specified maximum value in order for the regulator to remain stable over all operating conditions. This maximum
amount of ceramic output capacitance is dependent upon the amount of ceramic input capacitance used as well
as the load current of the application. This relationship is shown in Figure 19, which graphs the maximum stable
value of ceramic output capacitance as a function of ceramic input capacitance for load currents of 1.5A.
Figure 19. Maximum Ceramic Output Capacitance vs Ceramic Input Capacitance
If the maximum load current is 1.5A and a 10µF ceramic input capacitor is used, the regulator will be stable with
ceramic output capacitor values from 10µF up to about 150µF. When calculating the total ceramic output
capacitance present in an application, it is necessary to include any ceramic bypass capacitors connected to the
regulator output.
CFF (Feed Forward Capacitor)
The capacitor CFF is required to add phase lead and help improve loop compensation. The correct amount of
capacitance depends on the value selected for R1 (see Typical Application Circuit). The capacitor should be
selected such that the zero frequency as given by the equation shown below is approximately 45 kHz:
Fz = 45,000 = 1 / ( 2 x πx R1 x CFF ) (2)
A good quality ceramic with X5R or X7R dielectric should be used for this capacitor.
SELECTING A CAPACITOR
It is important to note that capacitance tolerance and variation with temperature must be taken into consideration
when selecting a capacitor so that the minimum required amount of capacitance is provided over the full
operating temperature range. In general, a good Tantalum capacitor will show very little capacitance variation
with temperature, but a ceramic may not be as good (depending on dielectric type). Aluminum electrolytics also
typically have large temperature variation of capacitance value.
Equally important to consider is a capacitor's ESR change with temperature: this is not an issue with ceramics,
as their ESR is extremely low. However, it is very important in Tantalum and aluminum electrolytic capacitors.
Both show increasing ESR at colder temperatures, but the increase in aluminum electrolytic capacitors is so
severe they may not be feasible for some applications (see Capacitor Characteristics Section).
CAPACITOR CHARACTERISTICS
CERAMIC: For values of capacitance in the 10 to 100 µF range, ceramics are usually larger and more costly
than tantalums but give superior AC performance for bypassing high frequency noise because of very low ESR
(typically less than 10 m). However, some dielectric types do not have good capacitance characteristics as a
function of voltage and temperature.
Copyright © 2003–2013, Texas Instruments Incorporated Submit Documentation Feedback 9
Product Folder Links: LP3855-ADJ
LP3855-ADJ
SNVS244F SEPTEMBER 2003REVISED APRIL 2013
www.ti.com
Z5U and Y5V dielectric ceramics have capacitance that drops severely with applied voltage. A typical Z5U or
Y5V capacitor can lose 60% of its rated capacitance with half of the rated voltage applied to it. The Z5U and Y5V
also exhibit a severe temperature effect, losing more than 50% of nominal capacitance at high and low limits of
the temperature range.
X7R and X5R dielectric ceramic capacitors are strongly recommended if ceramics are used, as they typically
maintain a capacitance range within ±20% of nominal over full operating ratings of temperature and voltage. Of
course, they are typically larger and more costly than Z5U/Y5U types for a given voltage and capacitance.
TANTALUM: Solid Tantalum capacitors are typically recommended for use on the output because their ESR is
very close to the ideal value required for loop compensation.
Tantalums also have good temperature stability: a good quality Tantalum will typically show a capacitance value
that varies less than 10-15% across the full temperature range of 125°C to 40°C. ESR will vary only about 2X
going from the high to low temperature limits.
The increasing ESR at lower temperatures can cause oscillations when marginal quality capacitors are used (if
the ESR of the capacitor is near the upper limit of the stability range at room temperature).
ALUMINUM: This capacitor type offers the most capacitance for the money. The disadvantages are that they are
larger in physical size, not widely available in surface mount, and have poor AC performance (especially at
higher frequencies) due to higher ESR and ESL.
Compared by size, the ESR of an aluminum electrolytic is higher than either Tantalum or ceramic, and it also
varies greatly with temperature. A typical aluminum electrolytic can exhibit an ESR increase of as much as 50X
when going from 25°C down to 40°C.
It should also be noted that many aluminum electrolytics only specify impedance at a frequency of 120 Hz, which
indicates they have poor high frequency performance. Only aluminum electrolytics that have an impedance
specified at a higher frequency (between 20 kHz and 100 kHz) should be used for the LP385X. Derating must be
applied to the manufacturer's ESR specification, since it is typically only valid at room temperature.
Any applications using aluminum electrolytics should be thoroughly tested at the lowest ambient operating
temperature where ESR is maximum.
PCB LAYOUT
Good PC layout practices must be used or instability can be induced because of ground loops and voltage drops.
The input and output capacitors must be directly connected to the input, output, and ground pins of the LP385X
using traces which do not have other currents flowing in them (Kelvin connect).
The best way to do this is to lay out CIN and COUT near the device with short traces to the VIN, VOUT, and ground
pins. The regulator ground pin should be connected to the external circuit ground so that the regulator and its
capacitors have a "single point ground".
It should be noted that stability problems have been seen in applications where "vias" to an internal ground plane
were used at the ground points of the IC and the input and output capacitors. This was caused by varying ground
potentials at these nodes resulting from current flowing through the ground plane. Using a single point ground
technique for the regulator and it's capacitors fixed the problem.
Since high current flows through the traces going into VIN and coming from VOUT, Kelvin connect the capacitor
leads to these pins so there is no voltage drop in series with the input and output capacitors.
RFI/EMI SUSCEPTIBILITY
RFI (radio frequency interference) and EMI (electromagnetic interference) can degrade any integrated circuit's
performance because of the small dimensions of the geometries inside the device. In applications where circuit
sources are present which generate signals with significant high frequency energy content (> 1 MHz), care must
be taken to ensure that this does not affect the IC regulator.
If RFI/EMI noise is present on the input side of the regulator (such as applications where the input source comes
from the output of a switching regulator), good ceramic bypass capacitors must be used at the input pin of the IC.
10 Submit Documentation Feedback Copyright © 2003–2013, Texas Instruments Incorporated
Product Folder Links: LP3855-ADJ
LP3855-ADJ
www.ti.com
SNVS244F SEPTEMBER 2003REVISED APRIL 2013
If a load is connected to the IC output which switches at high speed (such as a clock), the high-frequency current
pulses required by the load must be supplied by the capacitors on the IC output. Since the bandwidth of the
regulator loop is less than 100 kHz, the control circuitry cannot respond to load changes above that frequency.
The means the effective output impedance of the IC at frequencies above 100 kHz is determined only by the
output capacitor(s).
In applications where the load is switching at high speed, the output of the IC may need RF isolation from the
load. It is recommended that some inductance be placed between the output capacitor and the load, and good
RF bypass capacitors be placed directly across the load.
PCB layout is also critical in high noise environments, since RFI/EMI is easily radiated directly into PC traces.
Noisy circuitry should be isolated from "clean" circuits where possible, and grounded through a separate path. At
MHz frequencies, ground planes begin to look inductive and RFI/EMI can cause ground bounce across the
ground plane.
In multi-layer PCB applications, care should be taken in layout so that noisy power and ground planes do not
radiate directly into adjacent layers which carry analog power and ground.
OUTPUT NOISE
Noise is specified in two ways-
Spot Noise or Output noise density is the RMS sum of all noise sources, measured at the regulator output, at
a specific frequency (measured with a 1Hz bandwidth). This type of noise is usually plotted on a curve as a
function of frequency.
Total output Noise or Broad-band noise is the RMS sum of spot noise over a specified bandwidth, usually
several decades of frequencies.
Attention should be paid to the units of measurement. Spot noise is measured in units µV/Hz or nV/Hz and
total output noise is measured in µV(rms).
The primary source of noise in low-dropout regulators is the internal reference. In CMOS regulators, noise has a
low frequency component and a high frequency component, which depend strongly on the silicon area and
quiescent current. Noise can be reduced in two ways: by increasing the transistor area or by increasing the
current drawn by the internal reference. Increasing the area will decrease the chance of fitting the die into a
smaller package. Increasing the current drawn by the internal reference increases the total supply current
(ground pin current). Using an optimized trade-off of ground pin current and die size, LP3855-ADJ achieves low
noise performance and low quiescent current operation.
The total output noise specification for LP3855-ADJ is presented in the Electrical Characteristics table. The
Output noise density at different frequencies is represented by a curve under typical performance characteristics.
SHORT-CIRCUIT PROTECTION
The LP3855-ADJ is short circuit protected and in the event of a peak over-current condition, the short-circuit
control loop will rapidly drive the output PMOS pass element off. Once the power pass element shuts down, the
control loop will rapidly cycle the output on and off until the average power dissipation causes the thermal
shutdown circuit to respond to servo the on/off cycling to a lower frequency. Please refer to the section on
thermal information for power dissipation calculations.
SHUTDOWN OPERATION
A CMOS Logic low level signal at the shutdown (SD) pin will turn-off the regulator. Pin SD must be actively
terminated through a 10kpull-up resistor for a proper operation. If this pin is driven from a source that actively
pulls high and low (such as a CMOS rail to rail comparator), the pull-up resistor is not required. This pin must be
tied to Vin if not used.
The Shutdown (SD) pin threshold has no voltage hysteresis. If the Shutdown pin is actively driven, the voltage
transition must rise and fall cleanly and promptly.
Copyright © 2003–2013, Texas Instruments Incorporated Submit Documentation Feedback 11
Product Folder Links: LP3855-ADJ
LP3855-ADJ
SNVS244F SEPTEMBER 2003REVISED APRIL 2013
www.ti.com
DROPOUT VOLTAGE
The dropout voltage of a regulator is defined as the minimum input-to-output differential required to stay within
2% of the nominal output voltage. For CMOS LDOs, the dropout voltage is the product of the load current and
the Rds(on) of the internal MOSFET.
REVERSE CURRENT PATH
The internal MOSFET in LP3855-ADJ has an inherent parasitic diode. During normal operation, the input voltage
is higher than the output voltage and the parasitic diode is reverse biased. However, if the output is pulled above
the input in an application, then current flows from the output to the input as the parasitic diode gets forward
biased. The output can be pulled above the input as long as the current in the parasitic diode is limited to 200mA
continuous and 1A peak.
POWER DISSIPATION/HEATSINKING
The LP3855-ADJ can deliver a continuous current of 1.5A over the full operating temperature range. A heatsink
may be required depending on the maximum power dissipation and maximum ambient temperature of the
application. Under all possible conditions, the junction temperature must be within the range specified under
operating conditions. The total power dissipation of the device is given by:
PD= (VINVOUT)IOUT+ (VIN)IGND (3)
where IGND is the operating ground current of the device (specified under Electrical Characteristics).
The maximum allowable temperature rise (TRmax) depends on the maximum ambient temperature (TAmax) of the
application, and the maximum allowable junction temperature (TJmax):
TRmax = TJmaxTAmax (4)
The maximum allowable value for junction to ambient Thermal Resistance, θJA, can be calculated using the
formula:
θJA = TRmax / PD(5)
The LP3855-ADJ is available in TO-220 and DDPAK/TO-263 packages. The thermal resistance depends on
amount of copper area or heat sink, and on air flow. If the maximum allowable value of θJA calculated above is
60 °C/W for TO-220 package and 60 °C/W for DDPAK/TO-263 package no heatsink is needed since the
package can dissipate enough heat to satisfy these requirements. If the value for allowable θJA falls below these
limits, a heat sink is required.
HEATSINKING TO-220 PACKAGE
The thermal resistance of a TO220 package can be reduced by attaching it to a heat sink or a copper plane on a
PC board. If a copper plane is to be used, the values of θJA will be same as shown in next section for TO263
package.
The heatsink to be used in the application should have a heatsink to ambient thermal resistance,
θHA θJA θCH θJC. (6)
In this equation, θCH is the thermal resistance from the case to the surface of the heat sink and θJC is the thermal
resistance from the junction to the surface of the case. θJC is about 3°C/W for a TO-220 package. The value for
θCH depends on method of attachment, insulator, etc. θCH varies between 1.5°C/W to 2.5°C/W. If the exact value
is unknown, 2°C/W can be assumed.
HEATSINKING DDPAK/TO-263 PACKAGE
The DDPAK/TO-263 package uses the copper plane on the PCB as a heatsink. The tab of these packages are
soldered to the copper plane for heat sinking. Figure 20 shows a curve for the θJA of DDPAK/TO-263 package for
different copper area sizes, using a typical PCB with 1 ounce copper and no solder mask over the copper area
for heat sinking.
12 Submit Documentation Feedback Copyright © 2003–2013, Texas Instruments Incorporated
Product Folder Links: LP3855-ADJ
LP3855-ADJ
www.ti.com
SNVS244F SEPTEMBER 2003REVISED APRIL 2013
Figure 20. θJA vs Copper (1 Ounce) Area for DDPAK/TO-263 Package
As shown in the figure, increasing the copper area beyond 1 square inch produces very little improvement. The
minimum value for θJA for the DDPAK/TO-263 package mounted to a PCB is 32°C/W.
Figure 21 shows the maximum allowable power dissipation for DDPAK/TO-263 packages for different ambient
temperatures, assuming θJA is 35°C/W and the maximum junction temperature is 125°C.
Figure 21. Maximum Power Dissipation vs Ambient Temperature for DDPAK/TO-263 Package
Copyright © 2003–2013, Texas Instruments Incorporated Submit Documentation Feedback 13
Product Folder Links: LP3855-ADJ
LP3855-ADJ
SNVS244F SEPTEMBER 2003REVISED APRIL 2013
www.ti.com
REVISION HISTORY
Changes from Revision E (April 2013) to Revision F Page
Changed layout of National Data Sheet to TI format .......................................................................................................... 13
14 Submit Documentation Feedback Copyright © 2003–2013, Texas Instruments Incorporated
Product Folder Links: LP3855-ADJ
PACKAGE OPTION ADDENDUM
www.ti.com 14-Oct-2017
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
LP3855EMP-ADJ/NOPB ACTIVE SOT-223 NDC 5 1000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 LJ3B
LP3855EMPX-ADJ/NOPB ACTIVE SOT-223 NDC 5 2000 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 LJ3B
LP3855ES-ADJ/NOPB ACTIVE DDPAK/
TO-263 KTT 5 45 Pb-Free (RoHS
Exempt) CU SN Level-3-245C-168 HR -40 to 125 LP3855ES
-ADJ
LP3855ESX-ADJ/NOPB ACTIVE DDPAK/
TO-263 KTT 5 500 Pb-Free (RoHS
Exempt) CU SN Level-3-245C-168 HR -40 to 125 LP3855ES
-ADJ
LP3855ET-ADJ/NOPB ACTIVE TO-220 NDH 5 45 Green (RoHS
& no Sb/Br) CU SN Level-1-NA-UNLIM -40 to 125 LP3855ET
-ADJ
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
PACKAGE OPTION ADDENDUM
www.ti.com 14-Oct-2017
Addendum-Page 2
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
LP3855EMP-ADJ/NOPB SOT-223 NDC 5 1000 330.0 16.4 7.0 7.5 2.2 12.0 16.0 Q3
LP3855EMPX-ADJ/NOPB SOT-223 NDC 5 2000 330.0 16.4 7.0 7.5 2.2 12.0 16.0 Q3
LP3855ESX-ADJ/NOPB DDPAK/
TO-263 KTT 5 500 330.0 24.4 10.75 14.85 5.0 16.0 24.0 Q2
PACKAGE MATERIALS INFORMATION
www.ti.com 24-Aug-2017
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
LP3855EMP-ADJ/NOPB SOT-223 NDC 5 1000 367.0 367.0 35.0
LP3855EMPX-ADJ/NOPB SOT-223 NDC 5 2000 367.0 367.0 35.0
LP3855ESX-ADJ/NOPB DDPAK/TO-263 KTT 5 500 367.0 367.0 45.0
PACKAGE MATERIALS INFORMATION
www.ti.com 24-Aug-2017
Pack Materials-Page 2
MECHANICAL DATA
NDC0005A
www.ti.com
MECHANICAL DATA
NDH0005D
www.ti.com
MECHANICAL DATA
KTT0005B
www.ti.com
BOTTOM SIDE OF PACKAGE
TS5B (Rev D)
IMPORTANT NOTICE
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its
semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers
should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated
circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and
services.
Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced
documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements
different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers
remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have
full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products
used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with
respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous
consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and
take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will
thoroughly test such applications and the functionality of such TI products as used in such applications.
TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information,
including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to
assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any
way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource
solely for this purpose and subject to the terms of this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically
described in the published documentation for a particular TI Resource.
Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that
include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE
TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM,
INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF
PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL,
DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN
CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949
and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.
Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such
products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards
and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must
ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in
life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use.
Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life
support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all
medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.
TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product).
Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications
and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory
requirements in connection with such selection.
Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-
compliance with the terms and provisions of this Notice.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Texas Instruments:
LP3855EMP-ADJ LP3855EMP-ADJ/NOPB LP3855EMPX-ADJ/NOPB LP3855ES-ADJ/NOPB LP3855ESX-
ADJ/NOPB LP3855ET-ADJ/NOPB