74AUP1G74 Low-power D-type flip-flop with set and reset; positive-edge trigger Rev. 7 -- 22 May 2012 Product data sheet 1. General description The 74AUP1G74 provides a low-power, low-voltage single positive-edge triggered D-type flip-flop with individual data (D), clock (CP), set (SD) and reset (RD) inputs and complementary Q and Q outputs. The SD and RD are asynchronous active LOW inputs and operate independently of the clock input. Information on the data input is transferred to the Q output on the LOW-to-HIGH transition of the clock pulse. The D input must be stable one set-up time prior to the LOW-to-HIGH clock transition for predictable operation. Schmitt trigger action at all inputs makes the circuit tolerant to slower input rise and fall times across the entire VCC range from 0.8 V to 3.6 V. This device ensures a very low static and dynamic power consumption across the entire VCC range from 0.8 V to 3.6 V. This device is fully specified for partial power-down applications using IOFF. The IOFF circuitry disables the output, preventing the damaging backflow current through the device when it is powered down. 2. Features and benefits Wide supply voltage range from 0.8 V to 3.6 V High noise immunity Complies with JEDEC standards: JESD8-12 (0.8 V to 1.3 V) JESD8-11 (0.9 V to 1.65 V) JESD8-7 (1.2 V to 1.95 V) JESD8-5 (1.8 V to 2.7 V) JESD8-B (2.7 V to 3.6 V) ESD protection: HBM JESD22-A114F Class 3A exceeds 5000 V MM JESD22-A115-A exceeds 200 V CDM JESD22-C101E exceeds 1000 V Low static power consumption; ICC = 0.9 A (maximum) Latch-up performance exceeds 100 mA per JESD 78 Class II Inputs accept voltages up to 3.6 V Low noise overshoot and undershoot < 10 % of VCC IOFF circuitry provides partial power-down mode operation Multiple package options Specified from 40 C to +85 C and 40 C to +125 C 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger 3. Ordering information Table 1. Ordering information Type number Package Temperature range Name Description Version 74AUP1G74DC 40 C to +125 C VSSOP8 plastic very thin shrink small outline package; 8 leads; SOT765-1 body width 2.3 mm 74AUP1G74GT 40 C to +125 C XSON8 plastic extremely thin small outline package; no leads; SOT833-1 8 terminals; body 1 1.95 0.5 mm 74AUP1G74GF 40 C to +125 C XSON8 extremely thin small outline package; no leads; 8 terminals; body 1.35 1 0.5 mm 74AUP1G74GD 40 C to +125 C XSON8U plastic extremely thin small outline package; no leads; SOT996-2 8 terminals; UTLP based; body 3 2 0.5 mm 74AUP1G74GM 40 C to +125 C XQFN8 plastic, extremely thin quad flat package; no leads; 8 terminals; body 1.6 1.6 0.5 mm SOT902-2 74AUP1G74GN 40 C to +125 C XSON8 extremely thin small outline package; no leads; 8 terminals; body 1.2 1.0 0.35 mm SOT1116 74AUP1G74GS 40 C to +125 C XSON8 extremely thin small outline package; no leads; 8 terminals; body 1.35 1.0 0.35 mm SOT1203 SOT1089 4. Marking Table 2. Marking codes Type number Marking code[1] 74AUP1G74DC p74 74AUP1G74GT p74 74AUP1G74GF 54 74AUP1G74GD p74 74AUP1G74GM p74 74AUP1G74GN 54 74AUP1G74GS 54 [1] The pin 1 indicator is located on the lower left corner of the device, below the marking code. 5. Functional diagram SD D CP SD Q D Q S CP FF Q C1 Q 1D RD RD Fig 1. Logic symbol 74AUP1G74 Product data sheet R 001aah725 001aah726 Fig 2. IEC logic symbol All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 2 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger Q C C C C D Q C C RD SD 001aae087 CP C C Fig 3. Logic diagram 6. Pinning information 6.1 Pinning 74AUP1G74 CP 1 8 VCC D 2 7 SD Q 3 6 RD GND 4 5 Q 74AUP1G74 CP 1 8 VCC D 2 7 SD Q 3 6 RD GND 4 5 Q 001aae323 Transparent top view 001aae322 Fig 4. Pin configuration SOT765-1 74AUP1G74 Product data sheet Fig 5. Pin configuration SOT833-1, SOT1089, SOT1116 and SOT1203 All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 3 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger 74AUP1G74 1 8 VCC D 2 7 SD Q 3 6 RD GND 4 5 Q RD Q 8 1 7 CP 2 6 D 3 5 Q GND CP SD 4 74AUP1G74 VCC terminal 1 index area 001aai217 Transparent top view Transparent top view Fig 6. 001aae324 Pin configuration SOT996-2 Fig 7. Pin configuration SOT902-2 6.2 Pin description Table 3. Symbol Pin description Pin Description SOT765-1, SOT833-1, SOT1089, SOT996-2, SOT1116 and SOT1203 SOT902-2 CP 1 7 clock input D 2 6 data input Q 3 5 complement output GND 4 4 ground (0 V) Q 5 3 true output RD 6 2 asynchronous reset input (active LOW) SD 7 1 asynchronous set input (active LOW) VCC 8 8 supply voltage 7. Functional description Table 4. Function table for asynchronous operation[1] Input Output SD RD CP D Q Q L H X X H L H L X X L H L L X X H H [1] H = HIGH voltage level; L = LOW voltage level; X = don't care. 74AUP1G74 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 4 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger Table 5. Function table for synchronous operation[1] Input Output SD RD CP D Qn+1 Qn+1 H H L L H H H H H L [1] H = HIGH voltage level; L = LOW voltage level; X = don't care; = LOW-to-HIGH CP transition; Qn+1 = state after the next LOW-to-HIGH CP transition. 8. Limiting values Table 6. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). Symbol Parameter VCC supply voltage IIK input clamping current VI input voltage IOK output clamping current Conditions VI < 0 V [1] VO < 0 V [1] Min Max Unit 0.5 +4.6 V 50 - mA 0.5 +4.6 V 50 - mA 0.5 +4.6 V VO output voltage Active mode and Power-down mode IO output current VO = 0 V to VCC - 20 mA ICC supply current - +50 mA IGND ground current 50 - mA Tstg storage temperature 65 +150 C - 250 mW [1] [2] Tamb = 40 C to +125 C total power dissipation Ptot [2] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed. For VSSOP8 packages: above 110 C the value of Ptot derates linearly with 8.0 mW/K. For XSON8, XSON8U and XQFN8 packages: above 118 C the value of Ptot derates linearly with 7.8 mW/K. 9. Recommended operating conditions Table 7. Operating conditions Symbol Parameter VCC supply voltage VI input voltage VO output voltage Conditions Tamb ambient temperature t/V input transition rise and fall rate 74AUP1G74 Product data sheet Min Max Unit 0.8 3.6 V 0 3.6 V Active mode 0 VCC V Power-down mode; VCC = 0 V 0 3.6 V 40 +125 C - 200 ns/V VCC = 0.8 V to 3.6 V All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 5 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger 10. Static characteristics Table 8. Static characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions Min Typ Max Unit Tamb = 25 C VIH VIL VOH VOL HIGH-level input voltage LOW-level input voltage HIGH-level output voltage LOW-level output voltage VCC = 0.8 V 0.70 VCC - - V VCC = 0.9 V to 1.95 V 0.65 VCC - - V VCC = 2.3 V to 2.7 V 1.6 - - V VCC = 3.0 V to 3.6 V 2.0 - - V VCC = 0.8 V - - 0.30 VCC V VCC = 0.9 V to 1.95 V - - 0.35 VCC V VCC = 2.3 V to 2.7 V - - 0.7 V VCC = 3.0 V to 3.6 V - - 0.9 V IO = 20 A; VCC = 0.8 V to 3.6 V VCC 0.1 - - V IO = 1.1 mA; VCC = 1.1 V 0.75 VCC - - V IO = 1.7 mA; VCC = 1.4 V 1.11 - V VI = VIH or VIL - IO = 1.9 mA; VCC = 1.65 V 1.32 - - V IO = 2.3 mA; VCC = 2.3 V 2.05 - - V IO = 3.1 mA; VCC = 2.3 V 1.9 - - V IO = 2.7 mA; VCC = 3.0 V 2.72 - - V IO = 4.0 mA; VCC = 3.0 V 2.6 - - V IO = 20 A; VCC = 0.8 V to 3.6 V - - 0.1 V IO = 1.1 mA; VCC = 1.1 V - - 0.3 VCC V VI = VIH or VIL IO = 1.7 mA; VCC = 1.4 V - - 0.31 V IO = 1.9 mA; VCC = 1.65 V - - 0.31 V IO = 2.3 mA; VCC = 2.3 V - - 0.31 V IO = 3.1 mA; VCC = 2.3 V - - 0.44 V IO = 2.7 mA; VCC = 3.0 V - - 0.31 V IO = 4.0 mA; VCC = 3.0 V - - 0.44 V II input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - 0.1 A IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - 0.2 A IOFF additional power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V to 0.2 V - - 0.2 A ICC supply current VI = GND or VCC; IO = 0 A; VCC = 0.8 V to 3.6 V - - 0.5 A ICC additional supply current VI = VCC 0.6 V; IO = 0 A; VCC = 3.3 V; per pin - - 40 A CI input capacitance VCC = 0 V to 3.6 V; VI = GND or VCC - 0.6 - pF CO output capacitance VO = GND; VCC = 0 V - 1.3 - pF 74AUP1G74 Product data sheet [1] All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 6 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger Table 8. Static characteristics ...continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions Min Typ Max Unit VCC = 0.8 V 0.70 VCC - - V VCC = 0.9 V to 1.95 V 0.65 VCC - - V VCC = 2.3 V to 2.7 V 1.6 - - V VCC = 3.0 V to 3.6 V 2.0 - - V VCC = 0.8 V - - 0.30 VCC V VCC = 0.9 V to 1.95 V - - 0.35 VCC V VCC = 2.3 V to 2.7 V - - 0.7 V VCC = 3.0 V to 3.6 V - - 0.9 V Tamb = 40 C to +85 C VIH VIL VOH VOL HIGH-level input voltage LOW-level input voltage HIGH-level output voltage LOW-level output voltage VI = VIH or VIL IO = 20 A; VCC = 0.8 V to 3.6 V VCC 0.1 - - V IO = 1.1 mA; VCC = 1.1 V 0.7 VCC - - V IO = 1.7 mA; VCC = 1.4 V 1.03 - - V IO = 1.9 mA; VCC = 1.65 V 1.30 - - V IO = 2.3 mA; VCC = 2.3 V 1.97 - - V IO = 3.1 mA; VCC = 2.3 V 1.85 - - V IO = 2.7 mA; VCC = 3.0 V 2.67 - - V IO = 4.0 mA; VCC = 3.0 V 2.55 - - V IO = 20 A; VCC = 0.8 V to 3.6 V - - 0.1 V IO = 1.1 mA; VCC = 1.1 V - - 0.3 VCC V IO = 1.7 mA; VCC = 1.4 V - - 0.37 V VI = VIH or VIL IO = 1.9 mA; VCC = 1.65 V - - 0.35 V IO = 2.3 mA; VCC = 2.3 V - - 0.33 V IO = 3.1 mA; VCC = 2.3 V - - 0.45 V IO = 2.7 mA; VCC = 3.0 V - - 0.33 V IO = 4.0 mA; VCC = 3.0 V - - 0.45 V II input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - 0.5 A IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - 0.5 A IOFF additional power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V to 0.2 V - - 0.6 A ICC supply current VI = GND or VCC; IO = 0 A; VCC = 0.8 V to 3.6 V - - 0.9 A ICC additional supply current VI = VCC 0.6 V; IO = 0 A; VCC = 3.3 V; per pin - - 50 A 74AUP1G74 Product data sheet [1] All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 7 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger Table 8. Static characteristics ...continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions Min Typ Max Unit VCC = 0.8 V 0.75 VCC - - V VCC = 0.9 V to 1.95 V 0.70 VCC - - V VCC = 2.3 V to 2.7 V 1.6 - - V VCC = 3.0 V to 3.6 V 2.0 - - V VCC = 0.8 V - - 0.25 VCC V VCC = 0.9 V to 1.95 V - - 0.30 VCC V VCC = 2.3 V to 2.7 V - - 0.7 V VCC = 3.0 V to 3.6 V - - 0.9 V Tamb = 40 C to +125 C HIGH-level input voltage VIH LOW-level input voltage VIL VOH HIGH-level output voltage LOW-level output voltage VOL VI = VIH or VIL IO = 20 A; VCC = 0.8 V to 3.6 V VCC 0.11 - - V IO = 1.1 mA; VCC = 1.1 V 0.6 VCC - - V IO = 1.7 mA; VCC = 1.4 V 0.93 - - V IO = 1.9 mA; VCC = 1.65 V 1.17 - - V IO = 2.3 mA; VCC = 2.3 V 1.77 - - V IO = 3.1 mA; VCC = 2.3 V 1.67 - - V IO = 2.7 mA; VCC = 3.0 V 2.40 - - V IO = 4.0 mA; VCC = 3.0 V 2.30 - - V IO = 20 A; VCC = 0.8 V to 3.6 V - - 0.11 V IO = 1.1 mA; VCC = 1.1 V - - 0.33 VCC V IO = 1.7 mA; VCC = 1.4 V - - 0.41 V VI = VIH or VIL IO = 1.9 mA; VCC = 1.65 V - - 0.39 V IO = 2.3 mA; VCC = 2.3 V - - 0.36 V IO = 3.1 mA; VCC = 2.3 V - - 0.50 V IO = 2.7 mA; VCC = 3.0 V - - 0.36 V IO = 4.0 mA; VCC = 3.0 V - - 0.50 V II input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - 0.75 A IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - 0.75 A IOFF additional power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V to 0.2 V - - 0.75 A ICC supply current VI = GND or VCC; IO = 0 A; VCC = 0.8 V to 3.6 V - - 1.4 A ICC additional supply current VI = VCC 0.6 V; IO = 0 A; VCC = 3.3 V; per pin - - 75 A [1] [1] One input at VCC 0.6 V, other input at VCC or GND. 74AUP1G74 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 8 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger 11. Dynamic characteristics Table 9. Dynamic characteristics Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 10. Symbol Parameter Tamb = 25 C Conditions Tamb = 40 C to +125 C Unit Min Typ[1] Max Min Max (85 C) Min Max (125 C) - 25.4 - - - - - ns VCC = 1.1 V to 1.3 V 2.9 6.7 14.0 2.6 14.2 2.6 14.2 ns VCC = 1.4 V to 1.6 V 2.4 4.5 7.6 2.3 8.3 2.3 8.6 ns VCC = 1.65 V to 1.95 V 1.9 3.5 5.7 1.7 6.5 1.7 6.8 ns VCC = 2.3 V to 2.7 V 1.7 2.6 3.8 1.4 4.4 1.4 4.7 ns 1.5 2.2 3.1 1.2 3.4 1.2 3.7 ns - 19.6 - - - - - ns 2.7 5.6 11.0 2.5 11.4 2.5 11.5 ns CL = 5 pF tpd propagation delay CP to Q, Q; see Figure 8 [2] VCC = 0.8 V VCC = 3.0 V to 3.6 V SD to Q, Q; see Figure 9 [2] VCC = 0.8 V VCC = 1.1 V to 1.3 V VCC = 1.4 V to 1.6 V 2.4 4.0 6.3 2.2 6.9 2.2 7.3 ns VCC = 1.65 V to 1.95 V 2.0 3.3 4.9 1.7 5.6 1.7 5.9 ns VCC = 2.3 V to 2.7 V 1.9 2.7 3.7 1.7 4.0 1.7 4.2 ns 1.8 2.5 3.2 1.5 3.6 1.5 3.8 ns - 19.2 - - - - - ns VCC = 1.1 V to 1.3 V 2.6 5.5 11.0 2.5 11.3 2.5 11.5 ns VCC = 1.4 V to 1.6 V 2.3 3.9 6.3 2.2 6.8 2.2 7.3 ns VCC = 1.65 V to 1.95 V 1.9 3.2 5.0 1.8 5.6 1.8 5.9 ns VCC = 2.3 V to 2.7 V 1.9 2.6 3.6 1.7 4.1 1.7 4.3 ns VCC = 3.0 V to 3.6 V 1.8 2.4 3.3 1.5 3.6 1.5 3.8 ns VCC = 3.0 V to 3.6 V RD to Q, Q; see Figure 9 VCC = 0.8 V fmax maximum frequency 74AUP1G74 Product data sheet [2] CP; see Figure 9 VCC = 0.8 V - 53 - - - - - MHz VCC = 1.1 V to 1.3 V - 203 - 170 - 170 - MHz VCC = 1.4 V to 1.6 V - 347 - 310 - 300 - MHz VCC = 1.65 V to 1.95 V - 435 - 400 - 390 - MHz VCC = 2.3 V to 2.7 V - 550 - 490 - 480 - MHz VCC = 3.0 V to 3.6 V - 619 - 550 - 510 - MHz All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 9 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger Table 9. Dynamic characteristics ...continued Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 10. Symbol Parameter Tamb = 25 C Conditions Tamb = 40 C to +125 C Unit Min Typ[1] Max Min Max (85 C) Min Max (125 C) - 28.9 - - - - - ns 3.1 7.5 15.8 2.9 16.1 2.9 16.1 ns CL = 10 pF tpd propagation delay CP to Q, Q; see Figure 8 [2] VCC = 0.8 V VCC = 1.1 V to 1.3 V VCC = 1.4 V to 1.6 V 2.7 5.1 8.7 2.4 9.4 2.4 9.8 ns VCC = 1.65 V to 1.95 V 2.5 4.1 6.5 2.2 7.2 2.2 7.6 ns VCC = 2.3 V to 2.7 V 2.0 3.2 4.6 1.8 5.3 1.8 5.6 ns 1.8 2.8 3.8 1.6 4.1 1.6 4.4 ns - 23.2 - - - - - ns VCC = 1.1 V to 1.3 V 2.9 6.5 12.9 2.8 13.3 2.8 13.5 ns VCC = 1.4 V to 1.6 V 2.7 4.6 7.5 2.3 7.9 2.3 8.3 ns VCC = 1.65 V to 1.95 V 2.6 3.9 5.6 2.3 6.3 2.3 6.6 ns VCC = 2.3 V to 2.7 V 2.3 3.2 4.4 2.0 4.8 2.0 5.2 ns 2.2 3.0 3.9 1.9 4.2 1.9 4.4 ns VCC = 3.0 V to 3.6 V SD to Q, Q; see Figure 9 [2] VCC = 0.8 V VCC = 3.0 V to 3.6 V RD to Q, Q; see Figure 9 VCC = 0.8 V fmax maximum frequency 74AUP1G74 Product data sheet [2] - 22.7 - - - - - ns VCC = 1.1 V to 1.3 V 2.8 6.4 12.8 2.7 13.2 2.7 13.4 ns VCC = 1.4 V to 1.6 V 2.6 4.5 7.5 2.3 8.1 2.3 8.4 ns VCC = 1.65 V to 1.95 V 2.5 3.3 5.8 2.3 6.3 2.3 6.7 ns VCC = 2.3 V to 2.7 V 2.2 3.2 4.4 2.0 4.9 2.0 5.2 ns VCC = 3.0 V to 3.6 V 2.0 2.9 4.0 1.9 4.3 1.9 4.5 ns VCC = 0.8 V - 52 - - - - - MHz VCC = 1.1 V to 1.3 V - 192 - 150 - 150 - MHz VCC = 1.4 V to 1.6 V - 324 - 280 - 230 - MHz VCC = 1.65 V to 1.95 V - 421 - 310 - 250 - MHz VCC = 2.3 V to 2.7 V - 486 - 370 - 360 - MHz VCC = 3.0 V to 3.6 V - 550 - 410 - 360 - MHz CP; see Figure 9 All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 10 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger Table 9. Dynamic characteristics ...continued Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 10. Symbol Parameter Tamb = 25 C Conditions Tamb = 40 C to +125 C Unit Min Typ[1] Max Min Max (85 C) Min Max (125 C) - 32.4 - - - - - ns 3.5 8.3 17.6 3.3 17.8 3.3 18.0 ns CL = 15 pF tpd propagation delay CP to Q, Q; see Figure 8 [2] VCC = 0.8 V VCC = 1.1 V to 1.3 V VCC = 1.4 V to 1.6 V 3.2 5.6 9.5 2.8 10.5 2.8 11.1 ns VCC = 1.65 V to 1.95 V 2.7 4.6 7.2 2.5 8.1 2.5 8.6 ns VCC = 2.3 V to 2.7 V 2.4 3.6 5.2 2.2 5.8 2.2 6.2 ns 2.2 3.2 4.4 2.0 4.9 2.0 5.2 ns - 26.7 - - - - - ns VCC = 1.1 V to 1.3 V 3.3 7.3 14.7 3.1 15.2 3.1 15.4 ns VCC = 1.4 V to 1.6 V 3.2 5.2 8.3 2.9 9.0 2.9 9.5 ns VCC = 1.65 V to 1.95 V 2.8 4.3 6.4 2.5 7.1 2.5 7.5 ns VCC = 2.3 V to 2.7 V 2.8 3.7 5.1 2.2 5.5 2.2 5.8 ns 2.5 3.5 4.6 2.4 5.0 2.4 5.2 ns VCC = 3.0 V to 3.6 V SD to Q, Q; see Figure 9 [2] VCC = 0.8 V VCC = 3.0 V to 3.6 V RD to Q, Q; see Figure 9 VCC = 0.8 V fmax maximum frequency 74AUP1G74 Product data sheet [2] - 26.1 - - - - - ns VCC = 1.1 V to 1.3 V 3.2 7.2 14.5 3.1 15.0 3.1 15.2 ns VCC = 1.4 V to 1.6 V 3.1 5.1 8.4 2.7 9.2 2.7 9.7 ns VCC = 1.65 V to 1.95 V 2.7 4.3 6.5 2.6 7.3 2.6 7.7 ns VCC = 2.3 V to 2.7 V 2.6 3.6 5.0 2.4 5.5 2.4 5.8 ns VCC = 3.0 V to 3.6 V 2.4 3.4 4.6 2.3 5.0 2.3 5.2 ns VCC = 0.8 V - 50 - - - - - MHz VCC = 1.1 V to 1.3 V - 181 - 120 - 120 - MHz VCC = 1.4 V to 1.6 V - 301 - 190 - 160 - MHz VCC = 1.65 V to 1.95 V - 407 - 240 - 190 - MHz VCC = 2.3 V to 2.7 V - 422 - 300 - 270 - MHz VCC = 3.0 V to 3.6 V - 481 - 320 - 300 - MHz CP; see Figure 9 All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 11 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger Table 9. Dynamic characteristics ...continued Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 10. Symbol Parameter Tamb = 25 C Conditions Tamb = 40 C to +125 C Unit Min Typ[1] Max Min Max (85 C) Min Max (125 C) - 42.7 - - - - - ns VCC = 1.1 V to 1.3 V 4.2 10.6 22.5 4.0 23.0 4.0 23.3 ns CL = 30 pF tpd propagation delay CP to Q, Q; see Figure 8 [2] VCC = 0.8 V VCC = 1.4 V to 1.6 V 3.7 7.2 12.0 3.7 13.3 3.7 14.0 ns VCC = 1.65 V to 1.95 V 3.5 5.8 9.2 3.4 10.4 3.4 11.0 ns VCC = 2.3 V to 2.7 V 3.3 4.7 6.6 3.0 7.3 3.0 7.8 ns 3.0 4.3 5.8 2.8 6.8 2.8 7.3 ns - 37.0 - - - - - ns VCC = 1.1 V to 1.3 V 4.0 9.5 19.8 3.8 20.8 3.8 21.1 ns VCC = 1.4 V to 1.6 V 3.8 6.7 10.9 3.7 12.0 3.7 12.7 ns VCC = 1.65 V to 1.95 V 3.7 5.6 8.4 3.5 9.3 3.5 9.9 ns VCC = 2.3 V to 2.7 V 3.7 4.8 6.6 3.2 7.2 3.2 7.6 ns 3.4 4.6 6.0 3.1 6.8 3.1 7.1 ns VCC = 3.0 V to 3.6 V SD to Q, Q; see Figure 9 [2] VCC = 0.8 V VCC = 3.0 V to 3.6 V RD to Q, Q; see Figure 9 VCC = 0.8 V fmax maximum frequency 74AUP1G74 Product data sheet [2] - 36.4 - - - - - ns VCC = 1.1 V to 1.3 V 3.9 9.4 19.5 3.8 20.2 3.8 20.5 ns VCC = 1.4 V to 1.6 V 3.6 6.6 10.9 3.7 12.0 3.7 12.6 ns VCC = 1.65 V to 1.95 V 3.5 5.5 8.5 3.5 9.5 3.5 10.1 ns VCC = 2.3 V to 2.7 V 3.5 4.7 6.5 3.2 7.1 3.2 7.6 ns VCC = 3.0 V to 3.6 V 3.3 4.4 6.1 3.1 7.1 3.1 7.5 ns - 28 - - - - - CP; see Figure 9 VCC = 0.8 V MHz VCC = 1.1 V to 1.3 V - 145 - 70 - 70 - MHz VCC = 1.4 V to 1.6 V - 185 - 120 - 110 - MHz VCC = 1.65 V to 1.95 V - 270 - 150 - 120 - MHz VCC = 2.3 V to 2.7 V - 290 - 190 - 170 - MHz VCC = 3.0 V to 3.6 V - 315 - 200 - 190 - MHz All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 12 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger Table 9. Dynamic characteristics ...continued Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 10. Symbol Parameter Tamb = 25 C Conditions Tamb = 40 C to +125 C Unit Min Typ[1] Max Min Max (85 C) Min Max (125 C) VCC = 0.8 V - 3.4 - - - - - ns VCC = 1.1 V to 1.3 V - 0.6 - 1.2 - 1.2 - ns VCC = 1.4 V to 1.6 V - 0.3 - 0.6 - 0.6 - ns VCC = 1.65 V to 1.95 V - 0.4 - 0.5 - 0.5 - ns VCC = 2.3 V to 2.7 V - 0.2 - 0.4 - 0.4 - ns VCC = 3.0 V to 3.6 V - 0.3 - 0.4 - 0.4 - ns VCC = 0.8 V - 3.0 - - - - - ns VCC = 1.1 V to 1.3 V - 0.5 - 1.2 - 1.2 - ns VCC = 1.4 V to 1.6 V - 0.3 - 0.7 - 0.7 - ns VCC = 1.65 V to 1.95 V - 0.4 - 0.7 - 0.7 - ns VCC = 2.3 V to 2.7 V - 0.5 - 0.7 - 0.7 - ns VCC = 3.0 V to 3.6 V - 0.6 - 0.8 - 0.8 - ns VCC = 0.8 V - 1.9 - - - - - ns VCC = 1.1 V to 1.3 V - 0.3 - 0.5 - 0.5 - ns CL = 5 pF, 10 pF, 15 pF and 30 pF tsu set-up time D to CP HIGH; see Figure 8 D to CP LOW; see Figure 8 th trec hold time recovery time D to CP; see Figure 8 VCC = 1.4 V to 1.6 V - 0.2 - 0.2 - 0.2 - ns VCC = 1.65 V to 1.95 V - 0.2 - 0.1 - 0.1 - ns VCC = 2.3 V to 2.7 V - 0.2 - 0.1 - 0.1 - ns VCC = 3.0 V to 3.6 V - 0.2 - 0.1 - 0.1 - ns VCC = 1.1 V to 1.3 V - 0.5 - 0.9 - 0.9 - ns VCC = 1.4 V to 1.6 V - 0.2 - 0.6 - 0.6 - ns VCC = 1.65 V to 1.95 V - 0.2 - 0.4 - 0.4 - ns VCC = 2.3 V to 2.7 V - 0.1 - 0.1 - 0.1 - ns VCC = 3.0 V to 3.6 V - 0.1 - 0.1 - 0.1 - ns - 0.5 - 0.3 - 0.3 - ns RD; see Figure 9 SD; see Figure 9 VCC = 1.1 V to 1.3 V 74AUP1G74 Product data sheet VCC = 1.4 V to 1.6 V - 0.4 - 0.1 - 0.1 - ns VCC = 1.65 V to 1.95 V - 0.3 - 0 - 0 - ns VCC = 2.3 V to 2.7 V - 0.2 - 0.1 - 0.1 - ns VCC = 3.0 V to 3.6 V - 0.1 - 0.1 - 0.1 - ns All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 13 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger Table 9. Dynamic characteristics ...continued Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 10. Symbol Parameter tW pulse width Tamb = 25 C Conditions Tamb = 40 C to +125 C Unit Min Typ[1] Max Min Max (85 C) Min Max (125 C) VCC = 1.1 V to 1.3 V - 2.1 - 2.7 - 2.7 - ns VCC = 1.4 V to 1.6 V - 1.1 - 1.5 - 1.5 - ns VCC = 1.65 V to 1.95 V - 0.9 - 1.6 - 1.6 - ns VCC = 2.3 V to 2.7 V - 0.6 - 1.7 - 1.7 - ns VCC = 3.0 V to 3.6 V - 0.6 - 1.9 - 1.9 - ns VCC = 1.1 V to 1.3 V - 4.2 - 11.3 - 11.5 - ns VCC = 1.4 V to 1.6 V - 2.3 - 6.2 - 6.4 - ns VCC = 1.65 V to 1.95 V - 1.8 - 4.8 - 5.0 - ns VCC = 2.3 V to 2.7 V - 1.2 - 3.3 - 3.5 - ns VCC = 3.0 V to 3.6 V - 1.1 - 2.6 - 2.8 - ns CP HIGH or LOW; see Figure 8 SD or RD LOW; see Figure 9 power dissipation capacitance CPD fi = 1 MHz; VI = GND to VCC VCC = 0.8 V - 2.8 - - - - - pF VCC = 1.1 V to 1.3 V - 2.9 - - - - - pF VCC = 1.4 V to 1.6 V - 3.0 - - - - - pF VCC = 1.65 V to 1.95 V - 3.0 - - - - - pF VCC = 2.3 V to 2.7 V - 3.5 - - - - - pF VCC = 3.0 V to 3.6 V - 3.9 - - - - - pF [1] All typical values are measured at nominal VCC. [2] tpd is the same as tPLH and tPHL. [3] [3] CPD is used to determine the dynamic power dissipation (PD in W). PD = CPD VCC2 fi N + (CL VCC2 fo) where: fi = input frequency in MHz; fo = output frequency in MHz; CL = output load capacitance in pF; VCC = supply voltage in V; N = number of inputs switching; (CL VCC2 fo) = sum of outputs. 74AUP1G74 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 14 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger 12. Waveforms tW VI CP input VM GND 1/fmax VI VM D input GND th th t su t su t PHL t PLH VOH VM Q output VOL VOH Q output VM VOL t PLH t PHL 001aae365 Measurement points are given in Table 10. The shaded areas indicate when the input is permitted to change for predictable output performance. VOL and VOH are typical output voltage levels that occur with the output load. Fig 8. Table 10. The clock input (CP) to output (Q, Q) propagation delays, the data input (D) to clock input (CP) set-up and hold times and the clock input (CP) pulse width and maximum frequency Measurement points Supply voltage Output Input VCC VM VM VI tr = tf 0.8 V to 3.6 V 0.5 VCC 0.5 VCC VCC 3.0 ns 74AUP1G74 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 15 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger VI CP input VM GND t rec VI SD input VM t rec GND tW tW VI VM RD input GND t PLH t PHL t PHL t PLH VOH VM Q output VOL VOH VM Q output VOL 001aae366 Measurement points are given in Table 10. VOL and VOH are typical output voltage levels that occur with the output load. Fig 9. The set input (SD) and reset input (RD) to output (Q, Q) propagation delays, the set input (SD) and reset input (RD) pulse widths and the reset input (RD) to clock input (CP) recovery time 74AUP1G74 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 16 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger VCC VEXT 5 k G VI VO DUT RT CL RL 001aac521 Test data is given in Table 11. Definitions for test circuit: RL = Load resistance. CL = Load capacitance including jig and probe capacitance. RT = Termination resistance should be equal to the output impedance Zo of the pulse generator. VEXT = External voltage for measuring switching times. Fig 10. Test circuit for measuring switching times Table 11. Test data Supply voltage Load VEXT [1] VCC CL RL 0.8 V to 3.6 V 5 pF, 10 pF, 15 pF and 30 pF 5 k or 1 M [1] tPLH, tPHL tPZH, tPHZ tPZL, tPLZ open GND 2 VCC For measuring enable and disable times RL = 5 k For measuring propagation delays, setup and hold times and pulse width RL = 1 M. 74AUP1G74 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 17 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger 13. Package outline VSSOP8: plastic very thin shrink small outline package; 8 leads; body width 2.3 mm D E SOT765-1 A X c y HE v M A Z 5 8 Q A A2 A1 pin 1 index (A3) Lp 1 4 e L detail X w M bp 0 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D(1) E(2) e HE L Lp Q v w y Z(1) mm 1 0.15 0.00 0.85 0.60 0.12 0.27 0.17 0.23 0.08 2.1 1.9 2.4 2.2 0.5 3.2 3.0 0.4 0.40 0.15 0.21 0.19 0.2 0.13 0.1 0.4 0.1 8 0 Notes 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. 2. Plastic or metal protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION SOT765-1 REFERENCES IEC JEDEC JEITA EUROPEAN PROJECTION ISSUE DATE 02-06-07 MO-187 Fig 11. Package outline SOT765-1 (VSSOP8) 74AUP1G74 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 18 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger XSON8: plastic extremely thin small outline package; no leads; 8 terminals; body 1 x 1.95 x 0.5 mm 1 2 SOT833-1 b 4 3 4x (2) L L1 e 8 7 6 e1 5 e1 e1 8x A (2) A1 D E terminal 1 index area 0 1 2 mm scale DIMENSIONS (mm are the original dimensions) UNIT A(1) max A1 max b D E e e1 L L1 mm 0.5 0.04 0.25 0.17 2.0 1.9 1.05 0.95 0.6 0.5 0.35 0.27 0.40 0.32 Notes 1. Including plating thickness. 2. Can be visible in some manufacturing processes. REFERENCES OUTLINE VERSION IEC JEDEC JEITA SOT833-1 --- MO-252 --- EUROPEAN PROJECTION ISSUE DATE 07-11-14 07-12-07 Fig 12. Package outline SOT833-1 (XSON8) 74AUP1G74 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 19 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger XSON8: extremely thin small outline package; no leads; 8 terminals; body 1.35 x 1 x 0.5 mm SOT1089 E terminal 1 index area D A A1 detail X (4x)(2) e L (8x)(2) b 4 5 e1 1 terminal 1 index area 8 L1 X 0 0.5 scale Dimensions Unit mm max nom min 1 mm A(1) 0.5 A1 b D E e e1 L L1 0.35 0.40 0.04 0.20 1.40 1.05 0.15 1.35 1.00 0.55 0.35 0.30 0.35 0.27 0.32 0.12 1.30 0.95 Note 1. Including plating thickness. 2. Visible depending upon used manufacturing technology. Outline version SOT1089 sot1089_po References IEC JEDEC JEITA European projection Issue date 10-04-09 10-04-12 MO-252 Fig 13. Package outline SOT1089 (XSON8) 74AUP1G74 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 20 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger XSON8U: plastic extremely thin small outline package; no leads; 8 terminals; UTLP based; body 3 x 2 x 0.5 mm B D SOT996-2 A E A A1 detail X terminal 1 index area e1 v w b e L1 1 4 8 5 C C A B C M M y y1 C L2 L X 0 1 2 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max A1 b D E e e1 L L1 L2 v w y y1 mm 0.5 0.05 0.00 0.35 0.15 2.1 1.9 3.1 2.9 0.5 1.5 0.5 0.3 0.15 0.05 0.6 0.4 0.1 0.05 0.05 0.1 REFERENCES OUTLINE VERSION IEC SOT996-2 --- JEDEC JEITA --- EUROPEAN PROJECTION ISSUE DATE 07-12-18 07-12-21 Fig 14. Package outline SOT996-2 (XSON8U) 74AUP1G74 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 21 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger XQFN8: plastic, extremely thin quad flat package; no leads; 8 terminals; body 1.6 x 1.6 x 0.5 mm SOT902-2 X A B D terminal 1 index area E A A1 detail X e v w b 4 3 C C A B C y y1 C 5 e1 2 6 1 7 terminal 1 index area 8 L metal area not for soldering L1 0 1 Dimensions Unit(1) mm max nom min 2 mm scale A 0.5 A1 b D E e e1 0.05 0.25 1.65 1.65 0.20 1.60 1.60 0.55 0.00 0.15 1.55 1.55 0.5 L L1 v 0.35 0.15 0.30 0.10 0.25 0.05 0.1 w y y1 0.05 0.05 0.05 Note 1. Plastic or metal protrusions of 0.075 mm maximum per side are not included. References Outline version IEC JEDEC JEITA SOT902-2 --- MO-255 --- sot902-2_po European projection Issue date 10-11-02 11-03-31 Fig 15. Package outline SOT902-2 (XQFN8) 74AUP1G74 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 22 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger XSON8: extremely thin small outline package; no leads; 8 terminals; body 1.2 x 1.0 x 0.35 mm 1 2 SOT1116 b 4 3 (4x)(2) L L1 e 8 7 e1 6 e1 5 e1 (8x)(2) A1 A D E terminal 1 index area 0 0.5 scale Dimensions Unit mm 1 mm A(1) A1 b D E e e1 max 0.35 0.04 0.20 1.25 1.05 nom 0.15 1.20 1.00 0.55 min 0.12 1.15 0.95 0.3 L L1 0.35 0.40 0.30 0.35 0.27 0.32 Note 1. Including plating thickness. 2. Visible depending upon used manufacturing technology. Outline version sot1116_po References IEC JEDEC JEITA European projection Issue date 10-04-02 10-04-07 SOT1116 Fig 16. Package outline SOT1116 (XSON8) 74AUP1G74 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 23 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger XSON8: extremely thin small outline package; no leads; 8 terminals; body 1.35 x 1.0 x 0.35 mm SOT1203 b 2 1 3 (4x)(2) 4 L L1 e 8 7 6 e1 e1 5 e1 (8x)(2) A1 A D E terminal 1 index area 0 0.5 scale Dimensions Unit mm 1 mm A(1) A1 b D E e e1 L L1 max 0.35 0.04 0.20 1.40 1.05 0.35 0.40 nom 0.15 1.35 1.00 0.55 0.35 0.30 0.35 min 0.12 1.30 0.95 0.27 0.32 Note 1. Including plating thickness. 2. Visible depending upon used manufacturing technology. Outline version sot1203_po References IEC JEDEC JEITA European projection Issue date 10-04-02 10-04-06 SOT1203 Fig 17. Package outline SOT1203 (XSON8) 74AUP1G74 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 24 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger 14. Abbreviations Table 12. Abbreviations Acronym Description CDM Charged Device Model DUT Device Under Test ESD ElectroStatic Discharge HBM Human Body Model MM Machine Model 15. Revision history Table 13. Revision history Document ID Release date Data sheet status Change notice Supersedes 74AUP1G74 v.7 20120522 Product data sheet - 74AUP1G74 v.6 Modifications: 74AUP1G74 v.6 Modifications: * For type number 74AUP1G74GM the sot code has changed to SOT902-2. 20111128 * Product data sheet - 74AUP1G74 v.5 Legal pages updated. 74AUP1G74 v.5 20100726 Product data sheet - 74AUP1G74 v.4 74AUP1G74 v.4 20080603 Product data sheet - 74AUP1G74 v.3 74AUP1G74 v.3 20080207 Product data sheet - 74AUP1G74 v.2 74AUP1G74 v.2 20070515 Product data sheet - 74AUP1G74 v.1 74AUP1G74 v.1 20060825 Product data sheet - - 74AUP1G74 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 25 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger 16. Legal information 16.1 Data sheet status Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. [1] Please consult the most recently issued document before initiating or completing a design. [2] The term `short data sheet' is explained in section "Definitions". [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 16.2 Definitions Draft -- The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet -- A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification -- The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. 16.3 Disclaimers Limited warranty and liability -- Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. Right to make changes -- NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. 74AUP1G74 Product data sheet Suitability for use -- NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. Applications -- Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect. Limiting values -- Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale -- NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license -- Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 26 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger Export control -- This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. Non-automotive qualified products -- Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications. Translations -- A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. 16.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. 17. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com 74AUP1G74 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 7 -- 22 May 2012 (c) NXP B.V. 2012. All rights reserved. 27 of 28 74AUP1G74 NXP Semiconductors Low-power D-type flip-flop with set and reset; positive-edge trigger 18. Contents 1 2 3 4 5 6 6.1 6.2 7 8 9 10 11 12 13 14 15 16 16.1 16.2 16.3 16.4 17 18 General description . . . . . . . . . . . . . . . . . . . . . . 1 Features and benefits . . . . . . . . . . . . . . . . . . . . 1 Ordering information . . . . . . . . . . . . . . . . . . . . . 2 Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2 Pinning information . . . . . . . . . . . . . . . . . . . . . . 3 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4 Functional description . . . . . . . . . . . . . . . . . . . 4 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 5 Recommended operating conditions. . . . . . . . 5 Static characteristics. . . . . . . . . . . . . . . . . . . . . 6 Dynamic characteristics . . . . . . . . . . . . . . . . . . 9 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 18 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Revision history . . . . . . . . . . . . . . . . . . . . . . . . 25 Legal information. . . . . . . . . . . . . . . . . . . . . . . 26 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 26 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Contact information. . . . . . . . . . . . . . . . . . . . . 27 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section `Legal information'. (c) NXP B.V. 2012. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 22 May 2012 Document identifier: 74AUP1G74