SEMICONDUCTOR
8-29
August 1997
HIN230 thru HIN241
+5V Powered RS-232 Transmitters/Receivers
Features
Meets All RS-232E and V.28 Specifications
Requires Only Single +5V Power Supply
- (+5V and +12V - HIN231 and HIN239)
HIN233 and HIN235 Require No External Capacitors
Onboard Voltage Doubler/Inverter
Low Power Consumption
Low Power Shutdown Function
Three-State TTL/CMOS Receiver Outputs
Multiple Drivers
-±10V Output Swing for +5V lnput
- 300 Power-Off Source Impedance
- Output Current Limiting
- TTL/CMOS Compatible
- 30V/µs Maximum Slew Rate
Multiple Receivers
-±30V Input Voltage Range
-3k to 7k Input Impedance
- 0.5V Hysteresis to Improve Noise Rejection
Description
The HIN230-HIN241 family of RS-232 transmitters/receivers
interf ace circuits meet all ElA RS-232E and V.28 specifications,
and are particularly suited for those applications where ±12V is
not available. They require a single +5V power supply (except
HIN231 and HIN239) and features onboard charge pump volt-
age converters which generate +10V and -10V supplies from
the 5V supply. The HIN233 and HIN235 require no external
capacitors and are ideally suited for applications where circuit
board space is critical. The family of de vices off er a wide variety
of RS-232 transmitter/receiver combinations to accommodate
various applications (see Selection Table).
The drivers feature true TTL/CMOS input compatibility, slew-
rate-limited output, and 300 power-off source impedance.
The receivers can handle up to ±30V, and ha v e a 3k to 7k
input impedance. The receivers also feature hysteresis to
greatly improve noise rejection.
Applications
Any System Requiring RS-232 Communications Port
- Computer - Portable, Mainframe, Laptop
- Peripheral - Printers and Terminals
- Instrumentation
- Modems
Selection Table
PART
NUMBER POWER SUPPLY
VOLTAGE
NUMBER OF
RS-232
DRIVERS
NUMBER OF
RS-232
RECEIVERS EXTERNAL
COMPONENTS
LOW POWER
SHUTDOWN/TTL
THREE-STATE NUMBER OF
LEADS
HIN230 +5V 5 0 4 Capacitors YES/NO 20
HIN231 +5V and +7.5V to 13.2V 2 2 2 Capacitors NO/NO 16
HIN232 +5V 2 2 4 Capacitors NO/NO 16
HIN233 +5V 2 2 None NO/NO 20
HIN234 +5V 4 0 4 Capacitors NO/NO 16
HIN235 +5V 5 5 None YES/YES 24
HIN236 +5V 4 3 4 Capacitors YES/YES 24
HIN237 +5V 5 3 4 Capacitors NO/NO 24
HIN238 +5V 4 4 4 Capacitors NO/NO 24
HIN239 +5V and +7.5V to 13.2V 3 5 2 Capacitors NO/YES 24
HIN240 +5V 5 5 4 Capacitors YES/YES 44
HIN241 +5V 4 5 4 Capacitors YES/YES 28
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright © Harris Corporation 1997 File Number 3138.4
8-30
Ordering Information
Pin Descriptions
PART
NUMBER TEMP.
RANGE (oC) PACKAGE PKG. NO.
HIN230CB 0 to 70 20 Ld SOIC M20.3
HIN230IB -40 to 85 20 Ld SOIC M20.3
HIN230BY Die
HIN231CB 0 to 70 16 Ld SOIC M16.3
HIN231IB -40 to 85 16 Ld SOIC M16.3
HIN231BY Die
HIN232CP 0 to 70 16 Ld PDIP E16.3
HIN232CB 0 to 70 16 Ld SOIC M16.3
HIN232IP -40 to 85 16 Ld PDIP E16.3
HIN232IJ -40 to 85 16 Ld CERDIP F16.3
HIN232IB -40 to 85 16 Ld SOIC M16.3
HIN232MJ -55 to 125 16 Ld CERDIP F16.3
HIN232BY Die
HIN233CP 0 to 70 20 Ld PDIP E20.3
HIN234CB 0 to 70 16 Ld SOIC M16.3
HIN234IB -40 to 85 16 Ld SOIC M16.3
HIN234BY Die
HIN235CP 0 to 70 24 Ld PDIP E24.3
HIN236CP 0 to 70 24 Ld PDIP E24.3
HIN236CB 0 to 70 24 Ld SOIC M24.3
HIN236IP -40 to 85 24 Ld PDIP E24.3
HIN236IB -40 to 85 24 Ld SOIC M24.3
HIN236BY Die
HIN237CP 0 to 70 24 Ld PDIP E24.3
HIN237CB 0 to 70 24 Ld SOIC M24.3
HIN237IP -40 to 85 24 Ld PDIP E24.3
HIN237IB -40 to 85 24 Ld SOIC M24.3
HIN237BY Die
HIN238CP 0 to 70 24 Ld PDIP E24.3
HIN238CB 0 to 70 24 Ld SOIC M24.3
HIN238IP -40 to 85 24 Ld PDIP E24.3
HIN238IB -40 to 85 24 Ld SOIC M24.3
HIN238BY Die
HIN239CB 0 to 70 24 Ld SOIC M24.3
HIN239IB -40 to 85 24 Ld SOIC M24.3
HIN239BY Die
HIN240CN 0 to 70 44 Ld MQFP Q44.10X10
HIN240IN -40 to 85 44 Ld MQFP Q44.10X10
HIN240BY Die
HIN241CB 0 to 70 28 Ld SOIC M28.3
HIN241IB -40 to 85 28 Ld SOIC M28.3
HIN241CA 0 to 70 28 Ld SSOP M28.209
HIN241IA -40 to 85 28 Ld SSOP M28.209
HIN241BY Die
PART
NUMBER TEMP.
RANGE (oC) PACKAGE PKG. NO.
PIN FUNCTION
VCC Power Supply Input 5V ±10%. HIN233 and HIN235 5V ±5%.
V+ Internally generated positive supply (+10V nominal), HIN231 and HIN239 requires +7.5V to +13.2V.
V- Internally generated negative supply (-10V nominal).
GND Ground lead. Connect to 0V.
C1+ External capacitor (+ terminal) is connected to this lead.
C1- External capacitor (- terminal) is connected to this lead.
C2+ External capacitor (+ terminal) is connected to this lead.
C2- External capacitor (- terminal) is connected to this lead.
TIN Transmitter Inputs. These leads accept TTL/CMOS levels. An internal 400kpull-up resistor to VCC is
connected to each lead.
TOUT Transmitter Outputs. These are RS-232 levels (nominally ±10V).
RIN Receiver Inputs. These inputs accept RS-232 input levels. An internal 5kpull-down resistor to GND is connected
to each input.
ROUT Receiver Outputs. These are TTL/CMOS levels.
EN Enable input. This is an active low input which enables the receiver outputs. With EN = 5V, the outputs are placed
in a high impedance state.
SD Shutdown Input. With SD = 5V, the charge pump is disabled, the receiver outputs are in a high impedance state and
the transmitters are shut off.
NC No Connect. No connections are made to these leads.
HIN230 thru HIN241
8-31
Pinouts
HIN230 (SOIC)
TOP VIEW HIN231 (SOIC)
TOP VIEW
T3OUT
T1OUT
T2OUT
T2IN
T1IN
GND
C1+
VCC
V+
C1-
T4OUT
NC
SHUTDOWN
T5OUT
T5IN
T4IN
T3IN
V-
C2-
C2+
11
12
13
14
15
16
17
18
20
19
10
9
8
7
6
5
4
3
2
1
14
15
16
9
13
12
11
10
1
2
3
4
5
7
6
8
C+
C-
V-
T2OUT
R2IN
NC
T2IN
V+
GND
T1OUT
R1IN
R1OUT
T1IN
NC
VCC
R2OUT
VCC
+5V TO 10V
VOLTAGE DOUBLER
+10V TO -10V
VOLTAGE INVERTER
T1OUT
T2OUT
T3OUT
T4OUT
T5OUT
T5IN
T4IN
T1IN
T2IN
T3IN
T1
T2
T3
T4
T5
+5V400k
+5V
+1µF
+1µF
+
1µF
5
4
2
3
14 1
15 20
1619
8
10 9
13
V+
V-
C1+
C1-
C2+
C2-
17 SHUTDOWN
7
+5V400k
+5V400k
+5V400k
+5V400k
+
1µF
11
12
6
VCC
+5V
16
V+
+7.5V TO +13.2V
15
T1OUT
T2OUT
T1IN
T2IN
T1
T2
10
7
13
4
+5V400k
+5V400k
R1OUT R1IN
R1
1211
5k
R2OUT R2IN
R2
56
5k
+12V TO -12V
VOLTAGE INVERTER 1µF
3
V-
C+
C-
+
1µF
1
2
+
14
HIN230 thru HIN241
8-32
HIN232 (PDIP, CERDIP, SOIC)
TOP VIEW HIN233 (PDIP, SOIC)
TOP VIEW
Pinouts
(Continued)
14
15
16
9
13
12
11
10
1
2
3
4
5
7
6
8
C1+
V+
C1-
C2+
C2-
R2IN
T2OUT
VCC
T1OUT
R1IN
R1OUT
T1IN
T2IN
R2OUT
GND
V-
11
12
13
14
15
16
17
18
20
19
10
9
8
7
6
5
4
3
2
1
T2IN
T1IN
R1OUT
R1IN
T1OUT
GND
(V+) C1+
VCC
GND
(V-) C2-
R2OUT
T2OUT
V-
C2-
R2IN
C2+
V+ (C1-)
C1- (C1+)
V- (C2+)
C2+ (C2-)
NOTE: Pin numbers in parentheses are for SOIC Package.
VCC
+5V
2
V+
16
T1OUT
T2OUT
T1IN
T2IN
T1
T2
11
10
14
7
+5V400k
+5V400k
R1OUT R1IN
R1
1312
5k
R2OUT R2IN
R2
89
5k
+10V TO -10V
VOLTAGE INVERTER 1µF
6
V-
C2+
C2-
+
1µF
4
5
+5V TO 10V
VOLTAGE INVERTER
C1+
C1-
+
1µF
1
3+1µF
+
+
1µF
15
6
VCC
T1OUT
T2OUT
R1OUT
R2IN
T1IN
T2IN
R1IN
T1
+5V
+0.1µF
4
5
1
2
18
14 (8)
19
8 (13)
12 (10)
V+
V-
C1+
C1-
C2+
C2-
+5V 400k
GND
9
GND
17
R2OUT
NO
CONNECT
INTERNAL
-10V
SUPPLY
INTERNAL
+10V
SUPPLY
V-
C2+
C2-
13 (14)
5k
6
20
11 (12)
15
16
10 (11)
3
T2
+5V 400k
5k
HIN230 thru HIN241
8-33
HIN234 (SOIC)
TOP VIEW HIN235 (PDIP)
TOP VIEW
Pinouts
(Continued)
14
15
16
9
13
12
11
10
1
2
3
4
5
7
6
8
T1OUT
T2OUT
T2IN
T1IN
GND
V+
C1+
T3OUT
T4IN
T3IN
V-
C2-
C2+
C1-
T4OUT
VCC
1
2
3
4
5
6
7
8
9
10
11
12
T4OUT
T3OUT
T1OUT
T2OUT
R2IN
R2OUT
T2IN
T1IN
R1OUT
R1IN
GND
VCC
16
17
18
19
20
21
22
23
24
15
14
13
R3IN
T5IN
SD
EN
T5OUT
R4OUT
T3IN
R5OUT
R5IN
R3OUT
R4IN
T4IN
6
VCC
+5V TO 10V
VOLTAGE DOUBLER
+10V TO -10V
VOLTAGE INVERTER
T1OUT
T2OUT
T3OUT
T4OUT
T4IN
T1IN
T2IN
T3IN
T1
T2
T3
T4
+5V
+1µF
+1µF
+
1µF
4
3
1
2
13 16
14 15
7
98
12
V+
V-
C1+
C1-
C2+
C2-
+5V400k
+5V400k
+5V400k
+5V400k
+
1µF
10
11
5
12
VCC
T1OUT
T1IN
T1
+5V
+0.1µF
6
2
3
18
1
19
24
10
400k
13
14
R1OUT R1IN
R1
4
5
R2OUT R2IN
R2
23
22
R3OUT R3IN
R3
16
17
21
20
+5V
T2OUT
T2IN
+5V
T3OUT
T3IN
+5V
T4OUT
T4IN
+5V
T5OUT
T5IN
+5V
400k
400k
400k
400k
T2
T3
T4
T5
GND
9
R4IN
R5IN
R4
R5
11
15
7
8
R4OUT
R5OUT
EN SD
5k
5k
5k
5k
5k
HIN230 thru HIN241
8-34
HIN236 (PDIP, SOIC)
TOP VIEW HIN237 (PDIP, SOIC)
TOP VIEW
Pinouts
(Continued)
T3OUT
T1OUT
T2OUT
R1IN
R1OUT
T2IN
T1IN
GND
VCC
C1+
V+
C1-
T4OUT
R2OUT
SHUTDOWN
EN
T4IN
R3OUT
V-
C2-
C2+
R2IN
T3IN
R3IN
1
2
3
4
5
6
7
8
9
10
11
12
16
17
18
19
20
21
22
23
24
15
14
13
T3OUT
T1OUT
T2OUT
R1IN
R1OUT
T2IN
T1IN
GND
VCC
C1+
V+
C1-
T4OUT
R2OUT
T5IN
T5OUT
T4IN
R3OUT
V-
C2-
C2+
R2IN
T3IN
R3IN
1
2
3
4
5
6
7
8
9
10
11
12
16
17
18
19
20
21
22
23
24
15
14
13
9
VCC
+5V TO 10V
VOLTAGE DOUBLER
+10V TO -10V
VOLTAGE INVERTER
T1OUT
T2OUT
T3OUT
T4OUT
T4IN
T1IN
T2IN
T3IN
T1
T2
T3
T4
+5V
+1µF
+1µF
+
1µF
7
6
2
3
18 1
19 24
10
12 11
15
V+
V-
C1+
C1-
C2+
C2-
+5V400k
+5V400k
+5V400k
+5V400k
+
1µF
13
14
R1OUT R1IN
R1
45
5k
R2OUT R2IN
R2
2322
5k
R3OUT R3IN
R3
1617
5k
EN 20 21
SHUTDOWN
8
9
VCC
+5V TO 10V
VOLTAGE DOUBLER
+10V TO -10V
VOLTAGE INVERTER
T1OUT
T2OUT
T3OUT
T4OUT
T4IN
T1IN
T2IN
T3IN
T1
T2
T3
T4
+5V
+1µF
+1µF
+
1µF
7
6
2
3
18 1
19 24
10
12 11
15
V+
V-
C1+
C1-
C2+
C2-
+5V400k
+5V400k
+5V400k
+5V400k
+
1µF
13
14
R1OUT R1IN
R1
45
5k
R2OUT R2IN
R2
2322
5k
R3OUT R3IN
R3
1617
5k
T5OUT
T5IN
T5
21 20
+5V400k
8
HIN230 thru HIN241
8-35
HIN238 (PDIP, SOIC)
TOP VIEW HIN239 (SOIC)
TOP VIEW
Pinouts
(Continued)
T2OUT
T1OUT
R2IN
R2OUT
T1IN
R1OUT
R1IN
GND
VCC
C1+
V+
C1-
T3OUT
R3OUT
T4IN
T4OUT
T3IN
R4OUT
V-
C2-
C2+
R3IN
T2IN
R4IN
1
2
3
4
5
6
7
8
9
10
11
12
16
17
18
19
20
21
22
23
24
15
14
13
R1OUT
R1IN
GND
VCC
V+
C1+
C1-
V-
R5IN
R5OUT
R4OUT
R4IN
T1IN
R2OUT
R2IN
T2OUT
T1OUT
R3OUT
NC (NOTE)
EN
T3OUT
T2IN
R3IN
T3IN
1
2
3
4
5
6
7
8
9
10
11
12
16
17
18
19
20
21
22
23
24
15
14
13
NOTE: No Connect
9
VCC
+5V TO 10V
VOLTAGE DOUBLER
+10V TO -10V
VOLTAGE INVERTER
T1OUT
T2OUT
T3OUT
T4OUT
T4IN
T1IN
T2IN
T3IN
T1
T2
T3
T4
+5V
+1µF
+1µF
+
1µF
5
18
2
1
19 24
21 20
10
12 11
15
V+
V-
C1+
C1-
C2+
C2-
+5V400k
+5V400k
+5V400k
+5V400k
+
1µF
13
14
R1OUT R1IN
R1
76
5k
R2OUT R2IN
R2
34
5k
R3OUT R3IN
R3
2322
5k
R4OUT R4IN
R4
1617
5k
8
4
VCC
+10V TO -10V
VOLTAGE INVERTER
T1OUT
T2OUT
T3OUT
T1IN
T2IN
T3IN
T1
T2
T3
+5V
+1µF
+
1µF
24
23
19
20
16 13
6
75
8
V+
C1+
C1-
+5V400k
+5V400k
+5V400k
R1OUT R1IN
R1
2
5k
R2OUT R2IN
R2
2122
5k
R3OUT R3IN
R3
1817
5k
R4OUT R4IN
R4
1211
5k
R5OUT R5IN
R5
910
5k
EN 14
1
+7.5V TO +13.2V
V-
3
HIN230 thru HIN241
8-36
HIN240 (MQFP) HIN241 (SOIC, SSOP)
TOP VIEW
Pinouts
(Continued)
NC
GND
NC
R2IN
NC
T2OUT
T1OUT
T3OUT
T4OUT
R3IN
R3OUT
T5IN
NC 1
2
3
4
5
6
7
8
9
10
11
12 13 14 15 16 17
28
27
26
25
24
23
2221201918
39 38 37 36 35 34
33
32
31
30
29
44 43 42 41 40
R4OUT
T4IN
T3IN
R5OUT
R5IN
NC
NC
SHUT
EN
T5OUT
R4IN
R2OUT
T2IN
T1IN
R1OUT
R1IN
VCC
NC
NC
NC
NC
NC
C1+
V+
C1-
C2+
C2-
V-
NC
NC
NC
DOWN
T3OUT
T1OUT
T2OUT
R2IN
R2OUT
T2IN
T1IN
R1OUT
R1IN
GND
VCC
C1+
V+
C1-
T4OUT
R3OUT
SHUTDOWN
EN
R4IN
T4IN
R5OUT
R5IN
V-
C2-
C2+
R3IN
R4OUT
T3IN
28
27
26
25
24
23
22
21
20
19
18
17
16
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
19
VCC
+5V TO 10V
VOLTAGE DOUBLER
+10V TO -10V
VOLTAGE INVERTER
T1OUT
T2OUT
T3OUT
T1IN
T2IN
T3IN
T1
T2
T3
+5V
+1µF
1µF
+
1µF
15
14
7
8
37 6
25
27 26
30
V+
V-
C1+
C1-
C2+
C2-
+5V400k
+5V400k
+5V400k
+
1µF
28
29
R1OUT R1IN
R1
17
5k
R2OUT R2IN
R2
1013
5k
R3OUT R3IN
R3
43
5k
R4OUT R4IN
R4
4039
5k
R5OUT R5IN
R5
3536
5k
EN 42
16
T4OUT
T4IN
T4
38 5
+5V400k
T5OUT
T5IN
T5
241
+5V400k
SHUTDOWN
43
18
11
VCC
+5V TO 10V
VOLTAGE DOUBLER
+10V TO -10V
VOLTAGE INVERTER
T1OUT
T2OUT
T3OUT
T1IN
T2IN
T3IN
T1
T2
T3
+5V
+1µF
+1µF
+
1µF
7
6
2
3
20 1
12
14 13
17
V+
V-
C1+
C1-
C2+
C2-
+5V400k
+5V400k
+5V400k
+
1µF
15
16
R1OUT R1IN
R1
9
5k
R2OUT R2IN
R2
45
5k
R3OUT R3IN
R3
2726
5k
R4OUT R4IN
R4
2322
5k
R5OUT R5IN
R5
1819
5k
EN 24
8T4OUT
T4IN
T4
21 28
+5V400k
SHUTDOWN
25
10
8-37
Absolute Maximum Ratings Thermal Information
VCC to Ground . . . . . . . . . . . . . . . . . . . . . .(GND -0.3V) < VCC < 6V
V+ to Ground . . . . . . . . . . . . . . . . . . . . . . . (VCC -0.3V) < V+ < 12V
V- to Ground . . . . . . . . . . . . . . . . . . . . . . . -12V < V- < (GND +0.3V)
Input Voltages
TIN . . . . . . . . . . . . . . . . . . . . . . . . . (V- -0.3V) < VIN < (V+ +0.3V)
RIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30V
Output Voltages
TOUT. . . . . . . . . . . . . . . . . . . . (V- -0.3V) < VTXOUT < (V+ +0.3V)
ROUT. . . . . . . . . . . . . . . . . .(GND -0.3V) < VRXOUT < (V+ +0.3V)
Short Circuit Duration
TOUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous
ROUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous
Operating Conditions
Temperature Range
HIN-XXXCX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0oC to 70oC
HIN-XXXIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40oC to 85oC
HIN-XXXMX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
Thermal Resistance (Typical, Note 1) θJA (oC/W) θJC (oC/W)
16 Ld PDIP Package . . . . . . . . . . . . . . 90 N/A
24 Ld PDIP Package . . . . . . . . . . . . . . 75 N/A
16 Ld SOIC (W) Package . . . . . . . . . . 100 N/A
24 Ld SOIC Package. . . . . . . . . . . . . . 80 N/A
28 Ld SOIC Package. . . . . . . . . . . . . . 75 N/A
28 Ld SSOP Package . . . . . . . . . . . . . 100 N/A
44 Ld MQFP Package . . . . . . . . . . . . . 80 N/A
16 Ld CERDIP Package . . . . . . . . . . . 80 18
Maximum Junction Temperature (Hermetic Package) . . . . . . . . 175oC
Maximum Junction Temperature (Plastic Package) . . . . . . . . 150oC
Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150oC
Maximum Lead Temperature (Soldering 10s). . . . . . . . . . . . .300oC
(SOIC, SSOP, MQFP - Lead Tips Only)
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. θJA is measured with the component mounted on an evaluation PC board in free air.
Electrical Specifications Test Conditions: VCC = +5V ±10%, (VCC = +5V ±5% HIN233 and HIN235)
TA = Operating Temperature Range
PARAMETER TEST CONDITIONS MIN TYP MAX UNITS
Output Voltage Swing, TOUT Transmitter Outputs, 3k to Ground ±5±9±10 V
Power Supply Current, ICC No Load, TA = 25oC, HIN232-233 - 5 10 mA
HIN230, HIN234-238, HIN240-241 - 7 15 mA
HIN231, HIN239 - 0.4 1 mA
V+ Power Supply Current, ICC HIN231 - 1.8 5 mA
HIN239 - 5.0 15 mA
Shutdown Supply Current, ICC(SD) - 1 10 µA
Input Logic Low, TIN, EN, VlL TIN, EN, Shutdown - - 0.8 V
Input Logic High, VlH TIN 2.0 - - V
EN, Shutdown 2.4 - - V
Logic Pullup Current, IPTIN = 0V - 15 200 µA
RS-232 Input Voltage Range, VIN -30 - +30 V
Receiver Input Impedance, RIN VIN = ±3V 3.0 5.0 7.0 k
Receiver Input Low Threshold, VlN (H-L) VCC = 5V, TA = 25oC 0.8 1.2 - V
Receiver Input High Threshold, VIN (L-H) VCC = 5V, TA = 25oC - 1.7 2.4 V
Receiver Input Hysteresis, VHYST 0.2 0.5 1.0 V
TTL/CMOS Receiver Output Voltage Low, VOL IOUT = 1.6mA
(HIN231-HIN233 IOUT = 3.2mA) - 0.1 0.4 V
TTL/CMOS Receiver Output Voltage High, VOH IOUT = -1.0mA 3.5 4.6 - V
Output Enable Time, tEN HIN235, 236, 239, 240, 241 - 400 - ns
Output Disable Time, tDIS HIN235, 236, 239, 240, 241 - 250 - ns
Propagation Delay, tPD RS-232 to TTL - 0.5 - µs
Instantaneous Slew Rate, SR CL = 10pF, RL = 3k, TA = 25oC (Note 2) - - 30 V/µs
Transition Region Slew Rate, SRTRL = 3k, CL = 2500pF Measured from
+3V to -3V or -3V to +3V -3-V/µs
Output Resistance, ROUT VCC = V+ = V- = 0V, VOUT = ±2V 300 - -
RS-232 Output Short Circuit Current, ISC TOUT shorted to GND - ±10 - mA
NOTE:
2. Guaranteed by design.
HIN230 thru HIN241
8-38
Detailed Description
The HIN230 thru HIN241 family of RS-232 transmitters/receiv-
ers are powered b y a single +5V pow er supply (e xcept HIN-231
and HIN239), f eature lo w po wer consumption, and meet all ElA
RS-232C and V.28 specifications. The circuit is divided into
three sections: the charge pump , transmitter, and receiver.
Charge Pump
An equivalent circuit of the charge pump is illustr ated in Figure
1. The charge pump contains two sections: the voltage dou-
bler and the voltage inverter. Each section is driven by a two
phase, internally generated clock to generate +10V and -10V.
The nominal clock frequency is 16kHz. During phase one of
the clock, capacitor C1 is charged to VCC. During phase two,
the voltage on C1 is added to VCC, producing a signal across
C3 equal to twice VCC. During phase one, C2 is also charged
to 2VCC, and then during phase two , it is inv erted with respect
to ground to produce a signal across C4 equal to -2VCC. The
charge pump accepts input voltages up to 5.5V. The output
impedance of the voltage doubler section (V+) is approxi-
mately 200, and the output impedance of the voltage
inver ter section (V-) is approximately 450. A typical applica-
tion uses 1µF capacitors for C1-C4, however, the value is not
critical. Increasing the values of C1 and C2 will lower the out-
put impedance of the voltage doubler and inver ter, increasing
the values of the reservoir capacitors, C3 and C4, lowers the
ripple on the V+ and V- supplies.
During shutdown mode (HIN230, 236, 240 and 241), SHUT-
DOWN control line set to logic “1”, the charge pump is
turned off, V+ is pulled down to VCC, V- is pulled up to GND,
and the supply current is reduced to less than 10µA. The
transmitter outputs are disabled and the receiver outputs are
placed in the high impedance state.
Transmitters
The transmitters are TTL/CMOS compatible inver ters which
translate the inputs to RS-232 outputs. The input logic thresh-
old is about 26% of VCC, or 1.3V for VCC = 5V. A logic 1 at the
input results in a voltage of between -5V and V- at the output,
and a logic 0 results in a v oltage between +5V and (V+ -0.6V).
Each transmitter input has an internal 400k pullup resistor
so any unused input can be left unconnected and its output
remains in its low state. The output voltage swing meets the
RS-232C specifications of ±5V minimum with the worst case
conditions of: all transmitters driving 3k minimum load
impedance, VCC = 4.5V, and maximum allowable operating
temperature. The tr ansmitters hav e an internally limited output
slew r ate which is less than 30V/µs. The outputs are short cir-
cuit protected and can be shorted to ground indefinitely. The
powered down output impedance is a minimum of 300 with
±2V applied to the outputs and VCC = 0V.
Receivers
The receiver inputs accept up to ±30V while presenting the
required 3k to 7k input impedance e ven it the pow er is off
(VCC = 0V). The receivers have a typical input threshold of
1.3V which is within the ±3V limits, known as the transition
region, of the RS-232 specifications. The receiver output is
0V to VCC. The output will be low whenever the input is
greater than 2.4V and high whenever the input is floating or
driven between +0.8V and -30V. The receivers feature 0.5V
hysteresis to improve noise rejection. The receiver Enable
line EN, when set to logic “1”, (HIN236, 239, 240, and 241)
disables the receiver outputs, placing them in the high
impedance mode. The receiver outputs are also placed in
the high impedance state when in shutdown mode.
+
-C1 +
-C3 +
-C2 +
-C4
S1 S2 S5 S6
S3 S4 S7 S8
VCC GND
RC
OSCILLATOR
VCC
GND
V+ = 2VCC GND
V- = -(V+)
C1+
C1-C2-
C2+
VOLTAGE INVERTER
VOLTAGE DOUBLER
FIGURE 1. CHARGE PUMP
TOUT
V- < VTOUT < V+
300
400k
TXIN
GND < TXIN < VCC
V-
V+
VCC
FIGURE 2. TRANSMITTER
ROUT
GND < VROUT < VCC
5k
RXIN
-30V < RXIN < +30V
GND
VCC
FIGURE 3. RECEIVER
TIN
VOL
VOL
tPLH
tPHL
Average Propagation Delay = tPHL + tPLH
2
OR
RIN
TOUT
OR
ROUT
FIGURE 4. PROPAGATION DELAY DEFINITION
HIN230 thru HIN241
8-39
Typical Performance Curves
FIGURE 5. V- SUPPLY V OLT A GE vs VCC, V AR YING CAPACIT ORS FIGURE 6. V+, V- OUTPUT VOLTAGE vs LOAD
12
10
8
6
4
2
03.5 4.0 4.5 6.0
VCC
V- SUPPLY VOLTAGE
5.0 5.5
3.0
0.10µF
0.47µF
1µF
35
|ILOAD| (mA)
V+ (VCC = 4V)
V+ (VCC = 5V)
V- (VCC = 5V)
V- (VCC = 4V)
TA = 25oC
TRANSMITTER OUTPUTS
OPEN CIRCUIT
30252015105
0
SUPPLY VOLTAGE (|V|)
0
12
10
8
6
4
2
Test Circuits (HIN232)
FIGURE 7. GENERAL TEST CIRCUIT FIGURE 8. POWER-OFF SOURCE RESISTANCE
CONFIGURATION
14
15
16
9
13
12
11
10
1
2
3
4
5
7
6
8
C1+
V+
C1-
C2+
C2-
V-
R2IN
12OUT
VCC
T1OUT
R1IN
R1OUT
T1IN
T2IN
R2OUT
GND
+4.5V TO
+5.5V INPUT
3k
T1 OUTPUT
RS-232 ±30V INPUT
TTL/CMOS OUTPUT
TTL/CMOS INPUT
TTL/CMOS INPUT
TTL/CMOS OUTPUT
+
-
1µF
C3
+
-
1µF
C1
+
-
1µF
C2
+
-
1µF C4
3k
OUTPUT
RS-232
±30V INPUT
T2
14
15
16
9
13
12
11
10
1
2
3
4
5
7
6
8
C1+
V+
C1-
C2+
C2-
V-
R2IN
12OUT
VCC
T1OUT
R1IN
R1OUT
T1IN
T2IN
R2OUT
GND
T2OUT
T1OUT
VIN = ±2V A
ROUT = VIN/1
HIN230 thru HIN241
8-40
Applications
The HINXXX may be used for all RS-232 data terminal and
communication links. It is particularly useful in applications
where ±12V power supplies are not available for conven-
tional RS-232 interface circuits. The applications presented
represent typical interface configurations.
A simple duplex RS-232 por t with CTS/RTS handshaking is
illustrated in Figure 9. Fixed output signals such as DTR
(data terminal ready) and DSRS (data signaling rate select)
is generated by driving them through a 5k resistor
connected to V+.
In applications requiring four RS-232 inputs and outputs
(Figure 10), note that each circuit requires two charge pump
capacitors (C1 and C2) but can share common reservoir
capacitors (C3 and C4). The benefit of sharing common res-
er voir capacitors is the elimination of two capacitors and the
reduction of the charge pump source impedance which
effectively increases the output swing of the transmitters.
-
+
-
+
-
+
CTR (20) DATA
TERMINAL READY
DSRS (24) DATA
SIGNALING RATE
RS-232
INPUTS AND OUTPUTS
TD (2) TRANSMIT DATA
RTS (4) REQUEST TO SEND
RD (3) RECEIVE DATA
CTS (5) CLEAR TO SEND
SIGNAL GROUND (7)15
8
13
7
14
16
-
+
6
R2 R1
T2
T1
9
12
10
11
4
5
3
1
HIN232
C1
1µF
C2
1µF
TD
RTS
RD
CTS
SELECT
+5V
INPUTS
OUTPUTS
TTL/CMOS
FIGURE 9. SIMPLE DUPLEX RS-232 PORT WITH CTS/RTS
HANDSHAKING
-
+
RS-232
INPUTS AND OUTPUTS
DTR (20) DATA TERMINAL READY
DSRS (24) DATA SIGNALING RATE SELECT
DCD (8) DATA CARRIER DETECT
R1 (22) RING INDICATOR
SIGNAL GROUND (7)15
8
13
7
14
2
-
+
4
R2 R1
T2
T1
9
12
10
11
3
1HIN232
C1
1µF
DTR
DSRS
DCD
R1
+5V
INPUTS
OUTPUTS
TTL/CMOS
-
+-
+
TD (2) TRANSMIT DATA
RTS (4) REQUEST TO SEND
RD (3) RECEIVE DATA
CTS (5) CLEAR TO SEND
8
13
7
14
15
R2 R1
T2
T1
9
12
10
11
4
5
3
1
HIN232
C1
1µFC2
1µF
TD
RTS
RD
CTS
INPUTS
OUTPUTS
TTL/CMOS
-
+
5C2
1µF
16
C3
2µF
6
26
V- V+
-
+
C4
2µF
16
FIGURE 10. COMBINING TWO HIN232s FOR 4 PAIRS OF RS-232 INPUTS AND OUTPUTS
HIN230 thru HIN241
8-41
Die Characteristics
DIE DIMENSIONS:
160 mils x 140 mils
METALLIZATION:
Type: Al
Thickness: 10kű1kÅ
SUBSTRATE POTENTIAL
V+
PASSIVATION:
Type: Nitride over Silox
Nitride Thickness: 8kÅ
Silox Thickness: 7kÅ
TRANSISTOR COUNT:
238
PROCESS:
CMOS Metal Gate
Metallization Mask Layout
HIN240
T3OUT
T1OUT
T2OUT
R2IN
R2OUT
T2IN
T1IN
R1OUT
R1IN
GND
VCC
C1+ V+ C1-
T4OUT R3OUT
EN
R4IN
T4IN
R5OUT
V-C2-C2+
R3IN
R4OUT
T3IN
R5IN
SHUTDOWN
T5OUT
T5IN
HIN230 thru HIN241