(R) PCM1733 PCM 173 3 Stereo Audio DIGITAL-TO-ANALOG CONVERTER 18 Bits, 96kHz Sampling TM FEATURES DESCRIPTION COMPLETE STEREO DAC: Includes Digital Filter and Output Amp The PCM1733 is a complete low cost stereo audio digital-to-analog converter (DAC), operating off of a 256fS or 384fS system clock. The DAC contains a 3rdorder modulator, a digital interpolation filter, and an analog output amplifier. The PCM1733 accepts 18-bit input data in either normal or I2S formats. DYNAMIC RANGE: 95dB MULTIPLE SAMPLING FREQUENCIES: 16kHz to 96kHz 8X OVERSAMPLING DIGITAL FILTER SYSTEM CLOCK: 256fS / 384fS NORMAL OR I2S DATA INPUT FORMATS SMALL 14-PIN SOIC PACKAGE DIN The PCM1733 is ideal for low-cost, CD-quality consumer audio applications. Multi-level Delta-Sigma Modulator BCKIN LRCIN The digital filter performs an 8X interpolation function and includes de-emphasis at 44.1kHz. The PCM1733 can accept digital audio sampling frequencies from 16kHz to 96kHz, always at 8X oversampling. Serial Input I/F Low-pass Filter 8X Oversampling Digital Filter VOUTL CAP Multi-level Delta-Sigma Modulator FORMAT DAC DAC Low-pass Filter VOUTR Mode Control I/F DM Power Supply 256fS/384fS VCC SCKI GND International Airport Industrial Park * Mailing Address: PO Box 11400, Tucson, AZ 85734 * Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 * Tel: (520) 746-1111 * Twx: 910-952-1111 Internet: http://www.burr-brown.com/ * FAXLine: (800) 548-6133 (US/Canada Only) * Cable: BBRCORP * Telex: 066-6491 * FAX: (520) 889-1510 * Immediate Product Info: (800) 548-6132 (R) (c) 1998 Burr-Brown Corporation SBAS088 PDS-1435A 1 Printed in U.S.A. January, 1998 PCM1733 SPECIFICATIONS All specifications at +25C, +VCC = +5V, fS = 44.1kHz, and 18-bit input data, SYSCLK = 384fS, unless otherwise noted. PCM1733 PARAMETER CONDITIONS RESOLUTION DATA FORMAT Audio Data Interface Format Audio Data Format Sampling Frequency (fS) Internal System Clock Frequency THD+N at FS (0dB) THD+N at -60dB Dynamic Range Signal-to-Noise Ratio Channel Separation DC ACCURACY Gain Error Gain Mismatch, Channel-to-Channel Bipolar Zero Error ANALOG OUTPUT Output Voltage Center Voltage Load Impedance MAX UNITS Bits Standard /I2S Two's Binary Complement 16 96 kHz 0.8 0.8 VDC VDC A 256fS /384fS TTL 2.0 f = 991kHz EIAJ, A-weighted EIAJ, A-weighted 90 90 88 VOUT = VCC/2 at BPZ Full Scale (0dB) AC Load -83 -32 95 97 95 -78 dB dB dB dB dB 1.0 1.0 20 5.0 5.0 50 % of FSR % of FSR mV Vp-p VDC k 0.62 x VCC VCC/2 10 DIGITAL FILTER PERFORMANCE Passband Stopband Passband Ripple Stopband Attenuation Delay Time INTERNAL ANALOG FILTER -3dB Bandwidth Passband Response TYP 18 DIGITAL INPUT/OUTPUT Logic Level Input Logic Level VIH(1) VIL(1) Input Logic Current: IIN(1) DYNAMIC PERFORMANCE(2) MIN 0.445 11.125/fS fS fS dB dB sec 100 -0.16 kHz dB 0.555 0.17 -35 f = 20kHz POWER SUPPLY REQUIREMENTS Voltage Range Supply Current Power Dissipation 4.5 TEMPERATURE RANGE Operation Storage -25 -55 5 13 65 5.5 18 90 VDC mA mW +85 +125 C C NOTES: (1) Pins 1, 2, 3, 12, 13, 14: LRCIN, DIN, BCKIN, DM, FORMAT, SCKI. (2) Dynamic performance specs are tested with 20kHz low pass filter and THD+N specs are tested with 30kHz LPF, 400Hz HPF, Average-Mode. The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems. (R) PCM1733 2 PIN CONFIGURATION PIN ASSIGNMENTS TOP VIEW SOIC PIN NAME I/O FUNCTION 1(1) LRCIN IN Sample Rate Clock Input 2(1) DIN IN Audio Data Input 3(1) BCKIN IN Bit Clock Input for Audio Data. LRCIN 1 14 SCKI 4 NC -- No Connection DIN 2 13 FORMAT 5 CAP -- Common Pin of Analog Output Amp BCKIN 3 12 DM 6 VOUTR OUT 7 GND -- Ground Power Supply NC 4 CAP Right-Channel Analog Output 11 NC 8 VCC -- 5 10 NC 9 VOUTL OUT VOUTR 6 9 VOUTL 10 NC -- GND 7 8 VCC 11 NC -- No Connection 12(2) DM IN De-emphasis Control HIGH: De-emphasis ON LOW: De-emphasis OFF 13(2) FORMAT IN Audio Data Format Select HIGH: I2S Data Format LOW: Standard Data Format 14 IN System Clock Input (256fS or 384fS) PCM1733 PACKAGE INFORMATION PRODUCT PACKAGE PACKAGE DRAWING NUMBER(1) PCM1733U 14 Pin SOIC 235 SCKI Left-Channel Analog Output No Connection NOTES: (1) Schmitt Trigger input. (2) Schmitt Trigger input with internal pull-up. ELECTROSTATIC DISCHARGE SENSITIVITY NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ABSOLUTE MAXIMUM RATINGS Power Supply Voltage ....................................................................... +6.5V +VCC to +VDD Difference ................................................................... 0.1V Input Logic Voltage .................................................. -0.3V to (VDD + 0.3V) Power Dissipation .......................................................................... 290mW Operating Temperature Range ......................................... -25C to +85C Storage Temperature ...................................................... -55C to +125C Lead Temperature (soldering, 5s) .................................................. +260C Thermal Resistance, JA .............................................................. +90C/W ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. (R) 3 PCM1733 TYPICAL PERFORMANCE CURVES At TA = +25C, +VCC = +5V, fS = 44.1kHz, SYSCLK = 256fS, unless otherwise noted. DYNAMIC PERFORMANCE SNR, DYNAMIC RANGE vs TEMPERATURE 3.1 0dB 3.0 2.9 0.006 2.8 0.005 2.7 -60dB 0.004 0.003 2.6 0.002 2.5 0.001 2.4 98 0 25 50 75 85 97 97 96 96 95 95 93 -25 100 93 0 25 50 75 85 100 Temperature (C) THD+N vs POWER SUPPLY SNR, DYNAMIC RANGE vs POWER SUPPLY 0.009 3.2 99 99 3.1 0.006 2.9 0.005 2.8 0.004 2.7 0.003 2.6 0.002 2.5 -60dB SNR (dB) 3.0 0dB THD+N at -60dB (%) 98 0.007 97 97 96 96 95 95 Dynamic Range 94 0.001 98 SNR Dynamic Range (dB) 0.008 THD+N at 0dB (%) 94 Dynamic Range Temperature (C) 94 2.4 0 2.3 4.5 4.75 5.0 5.25 93 5.5 93 4.5 4.75 5.0 VCC (V) 98 5.2 98 97 0.012 4.2 3.7 0dB 0.008 3.2 0.006 2.7 -60dB 0.004 88.2 96 95 95 94 94 93 93 Dynamic Range 92 91 90 90 89 89 88 48 88.2 Sampling Rate (kHz) (R) 4 92 91 44.1 96 Sampling Rate (kHz) PCM1733 97 SNR 96 88 2.2 48 SNR (dB) 4.7 THD+N AT -60dB (%) 0.014 44.1 5.5 SNR, DYNAMIC RANGE vs SAMPLING RATE THD+N vs SAMPLING RATE 0.01 5.25 VCC (V) 0.016 THD+N at 0dB (%) 98 SNR 94 2.3 0 -25 99 96 Dynamic Range (dB) THD+N at 0dB (%) 0.007 SNR (dB) 0.008 99 THD+N at -60dB (%) 3.2 Dynamic Range (dB) THD+N vs TEMPERATURE 0.009 TYPICAL PERFORMANCE CURVES At TA = +25C, +VCC = +VDD = +5V, fS = 44.1kHz, and 18-bit input data, SYSCLK = 384fS, unless otherwise noted. DIGITAL FILTER OVERALL FREQUENCY CHARACTERISTIC PASSBAND RIPPLE CHARACTERISTIC 0 -20 -0.2 -40 -0.4 dB dB 0 -60 -0.6 -80 -0.8 -100 -1 0 0.4536fS 1.3605fS 2.2675fS 3.1745fS 4.0815fS 0 0.1134fS Frequency (Hz) DE-EMPHASIS FREQUENCY RESPONSE (44.1kHz) 0.3402fS 0.4535fS DE-EMPHASIS FREQUENCY ERROR (44.1kHz) 0 0.6 -2 0.4 -4 0.2 Error (dB) Level (dB) 0.2268fS Frequency (Hz) -6 0.0 -8 -0.2 -10 -0.4 -12 -0.6 0 5 10 15 20 25 0 Frequency (kHz) 4999.8375 9999.675 14999.5125 19999.35 Frequency (kHz) (R) 5 PCM1733 1/fs L_ch R_ch LRCIN (pin 1) BCKIN (pin 3) AUDIO DATA WORD = 18-BIT DIN (pin 2) 16 17 18 1 2 3 MSB 16 17 18 1 2 LSB 3 MSB 16 17 18 LSB FIGURE 1. "Normal" Data Input Timing. 1/fs L_ch LRCIN (pin 1) R_ch BCKIN (pin 3) AUDIO DATA WORD = 18-BIT DIN (pin 2) 1 2 16 3 MSB 17 18 1 2 LSB 3 MSB 16 1 17 18 2 LSB FIGURE 2. "I2S" Data Input Timing. LRCKIN 1.4V tBCH tBCL tLB 1.4V BCKIN tBL tBCY 1.4V DIN tDS tDH BCKIN Pulse Cycle Time : tBCY : 100ns (min) BCKIN Pulse Width High : tBCH : 50ns (min) BCKIN Pulse Width Low : tBCL : 50ns (min) BCKIN Rising Edge to LRCIN Edge : tBL : 30ns (min) LRCIN Edge to BCKIN Rising Edge : tLB : 30ns (min) DIN Set-up Time : tDS : 30ns (min) DIN Hold Time : tDH : 30ns (min) FIGURE 3. Audio Data Input Timing. SYSTEM CLOCK The system clock for PCM1733 must be either 256fS or 384fS, where fS is the audio sampling frequency (LRCIN), typically 32kHz, 44.1kHz or 48kHz. The system clock is used to operate the digital filter and the noise shaper. The system clock input (SCKI) is at pin 14. Timing conditions for SCKI are shown in Figure 4. tSCKIH 2.0V SCKI 0.8V tSCKIL System Clock Pulse Width High System Clock Pulse Width Low tSCKIH tSCKIL 13ns (min) 13ns (min) FIGURE 4. System Clock Timing Requirements. (R) PCM1733 6 PCM1733 has a system clock detection circuit which automatically detects the frequency, either 256fS or 384fS. The system clock should be synchronized with LRCIN (pin 1), but PCM1733 can compensate for phase differences. If the phase difference between LRCIN and system clock is greater than 6 bit clocks (BCKIN), the synchronization is performed automatically. The analog outputs are forced to a bipolar zero state (VCC/2) during the synchronization function. Table I shows the typical system clock frequency inputs for the PCM1733. FORMAT 0 1 TABLE II. Input Format Selection. RESET PCM1733 has an internal power-on reset circuit. The internal power-on reset initializes (resets) when the supply voltage VCC > 2.2V (typ). The power-on reset has an initialization period equal to 1024 system clock periods after VCC > 2.2V. During the initialization period, the outputs of the DAC are invalid, and the analog outputs are forced to VCC/2. Figure 6 illustrates the power-on reset and reset-pin reset timing. SYSTEM CLOCK FREQUENCY (MHz) SAMPLING RATE (LRCIN) 32kHz 44.1kHz 48kHz 256fS 384fS 8.192 11.2896 12.288 12.288 16.9340 18.432 Normal Format (MSB-first, right-justified) I2S Format (Philips serial data protocol) DE-EMPHASIS CONTROL Pin 12 (DM) enables PCM1733's de-emphasis function. Deemphasis operates only at 44.1kHz. TABLE I. System Clock Frequencies vs Sampling Rate. TYPICAL CONNECTION DIAGRAM Figure 5 illustrates the typical connection diagram for PCM1733 used in a stand-alone application. DM 0 1 De-emphasis OFF De-emphasis ON (44.1kHz) TABLE III. De-emphasis Control Selection. INPUT DATA FORMAT PCM1733 can accept input data in either normal (MSB-first, right-justified) or I2S formats. When pin 13 (FORMAT) is LOW, normal data format is selected; a HIGH on pin 13 selects I2S format. +5V Analog 2 3 PCM Audio Data Processor 1 7 8 GND VCC DIN VOUTL BCKIN CAP 5 + LRCIN PCM1733 14 9 SCKI 256fS/384fS CLK VOUTR FORMAT DM 6 Post LPF Lch Analog Out Post LPF Rch Analog Out 10F 13 12 Mode Control FIGURE 5. Typical Connection Diagram. VCC 2.6V 2.2V 1.8V Reset Reset Removal Internal Reset 1024 system (= SCKI) clocks SCKI Clock FIGURE 6. Internal Power-On Reset Timing. (R) 7 PCM1733 APPLICATION CONSIDERATIONS INTERNAL ANALOG FILTER FREQUENCY RESPONSE (20Hz~24kHz, Expanded Scale) DELAY TIME 1.0 There is a finite delay time in delta-sigma converters. In A/D converters, this is commonly referred to as latency. For a delta-sigma D/A converter, delay time is determined by the order number of the FIR filter stage, and the chosen sampling rate. The following equation expresses the delay time of PCM1733: dB 0.5 0 TD = 11.125 x 1/fS -0.5 For fS = 44.1kHz, TD = 11.125/44.1kHz = 251.4s Applications using data from a disc or tape source, such as CD audio, CD-Interactive, Video CD, DAT, Minidisc, etc., generally are not affected by delay time. For some professional applications such as broadcast audio for studios, it is important for total delay time to be less than 2ms. -1.0 20 100 1k Frequency (Hz) 10k 24k FIGURE 7. Low Pass Filter Frequency Response. OUTPUT FILTERING For testing purposes all dynamic tests are done on the PCM1733 using a 20kHz low pass filter. This filter limits the measured bandwidth for THD+N, etc. to 20kHz. Failure to use such a filter will result in higher THD+N and lower SNR and Dynamic Range readings than are found in the specifications. The low pass filter removes out of band noise. Although it is not audible, it may affect dynamic specification numbers. dB INTERNAL ANALOG FILTER FREQUENCY RESPONSE (10Hz~10MHz) 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 The performance of the internal low pass filter from DC to 24kHz is shown in Figure 7. The higher frequency rolloff of the filter is shown in Figure 8. If the user's application has the PCM1733 driving a wideband amplifier, it is recommended to use an external low pass filter. A simple 3rdorder filter is shown in Figure 9. For some applications, a passive RC filter or 2nd-order filter may be adequate. 10 100 1k 10k 100k 1M 10M Frequency (Hz) BYPASSING POWER SUPPLIES The power supplies should be bypassed as close as possible to the unit. It is also recommended to include a 0.1F ceramic capacitor in parallel with the 10F tantalum bypass capacitor. FIGURE 8. Low Pass Filter Wideband Frequency Response. GAIN vs FREQUENCY 6 90 + 10k VSIN 10k 680pF OPA134 10k 0 -34 -90 -54 -180 Phase 100pF - -74 -270 -94 -360 100 FIGURE 9. 3rd-Order LPF. (R) PCM1733 8 1k 10k Frequency (Hz) 100k 1M Phase () 1500pF Gain (dB) Gain -14 + In + 8fS 18-Bit + Z-1 + + - + Z-1 Z-1 - + + 5-level Quantizer + 4 3 Out 48fS (384fS) 64fS (256fS) 2 1 0 FIGURE 10. 5-Level Modulator Block Diagram. THEORY OF OPERATION 5-LEVEL DELTA SIGMA MODULATOR The delta-sigma section of PCM1733 is based on a 5-level amplitude quantizer and a 3rd-order noise shaper. This section converts the oversampled input data to 5-level deltasigma format. A block diagram of the 5-level delta-sigma modulator is shown in Figure 10. This 5-level delta-sigma modulator has the advantage of stability and clock jitter over the typical one-bit (2-level) delta-sigma modulator. The combined oversampling rate of the delta-sigma modulator and the internal 8X interpolation filter is 96fS for a 384fS system clock, and 64fS for a 256fS system clock. The theoretical quantization noise performance of the 5-level delta-sigma modulator is shown in Figure 11. 20 0 Gain (-dB) -20 -40 -60 -80 -100 -120 -140 -160 0 5 10 15 20 25 Frequency (kHz) FIGURE 11. Quantization Noise Spectrum. (R) 9 PCM1733 PACKAGE OPTION ADDENDUM www.ti.com 30-Jul-2011 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp PCM1733U ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PCM1733UG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM (3) Samples (Requires Login) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Communications and Telecom www.ti.com/communications Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps DLP(R) Products www.dlp.com Energy and Lighting www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com Wireless www.ti.com/wireless-apps RF/IF and ZigBee(R) Solutions www.ti.com/lprf TI E2E Community Home Page e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright (c) 2011, Texas Instruments Incorporated